

11/29 2014

冷えた原子でつくる 新しい物質の状態

京都大学大学院理学研究科 物理学·宇宙物理学専攻 物理第一分野 量子光学研究室

http://yagura.scphys.kyoto-u.ac.jp

極低温原子がもたらす物性物理学の新展開

レーザー冷却・トラップ:

ボース・アインシュタイン凝縮、フェルミ原子超流動

光格子中の冷却原子:

多様性 強い相関を持った原子集団 大きなスピン自由度を持った系 人工的に極めて高い"磁場"が印加された状態 各格子点の単一原子の観測と制御 素粒子理論のシミュレーション

中性原子のレーザー冷却法の開発

・ザー冷却・トラップ

- **原子数**:10⁷
- 密度: 10¹¹/cm³
- •温度:10µK

-冷却・トラップ

原子気体のボース・アインシュタイン凝縮の実現

レーザー冷却の技術を駆使して、 1995年に実現したルビジウム金属 の原子のボース・アインシュタイン 凝縮は100 nK という非常に低い 温度で実現しました!

気体を冷却していくと、液体へ、 そして、固体へと変化するはずで すが、、、

この凝縮体の原子の密度は低く、あくまで、気体のままです

気体の過冷却した、寿命の長い特別な状態が原子気体のボース凝縮であると言えます。

原子はランダム に 熱運動をする $l >> \lambda_{dB}$

低温になった原子 では、波動性が顕 著に表れる

 $l > \lambda_{dB}$

互いの波が重なり 合い量子力学的 相転移が起きる

 $l \approx \lambda_{dB}$

下の図はRb(ルビジウム)原子の速度分布の変化を示しています。左から右に行くにつれて、 原子の温度は低くなっています。

[M. H. Anderson, et al, Science, 269, 198(1995)]

0.2 mm

量子力学によれば、原子には、 「ボース粒子」と「フェルミ粒子」(電子のなかま) の2種類があります

超低温で

「ボース粒子」はボース・アインシュタイン凝縮を起こしますが、 「フェルミ粒子」はどんな現象が起こるでしょうか?

固体の超伝導:ペアーになった電子の凝縮 0.15 0.125 H. Kamerlingh Onnes, Hg Akad. Van Wetenschappen 0.10 14, 113 818 (1911) ି **ଅ** 0.075 0.05 0.025 10⁻⁵Ω 0.00 http://commons.wikimedia.org/wiki/File:Meissner_effect_p13 4.20 4.30 4.00 4.10 4.40 90048.jpg#mediaviewer/File:Meissner effect p1390048.jpg **T**[K] Bardeen-Cooper-Schriefer 理論 "格子振動を媒介 とした引力"

http://www.phys.shimaneu.ac.jp/mutou_lab/ zakki/super/pair_const.html

"原子対"を"分子"に変換

極低温原子がもたらす物性物理学の新展開

レーザー冷却・トラップ:

ボース・アインシュタイン凝縮、フェルミ原子超流動

光格子中の冷却原子:

多様性 強い相関を持った原子集団 大きなスピン自由度を持った系 人工的に極めて高い"磁場"が印加された状態 各格子点の単一原子の観測と制御 素粒子理論のシミュレーション

光が作る周期構造:「光格子」

隣の格子点へ(トンネル)移動

粒子間の相互作用

「「」」」 いろいろな原子を 利田オスーレができる							artment of Commerce rd Reference ta Group v.nist.gov/srd 16 17
13 IIA 3 2s _{1/2} 1 * s ₀ 2 Lithium 6.941 13 ² 2s 1 eryllium 0.12182 15 ² 2s ² 11 2s _{1/2} 11 2s _{1/2} 12 1s ₀ 3 Sodium	proton mat fine-structu Rydberg cu Boltzmann	►UC ss m _e c ^c m _e c m _e c m m m m m m m m m m m m m m m m m m m	0.5110 MeV 1.6726 × 10 ⁻²⁷ kg 1/137.036 10 973 732 m ⁻¹ 3.289 842 × 10 ¹⁵ Hz 13.6057 eV 1.3807 × 10 ⁻²³ J K ⁻¹		Artificially Prepared	Boron Carbon 10.811 12.0107 1s ² 2s ² 2p 1s ² 2s ² 2p ² 13 ² P ^o _{1/2} 14 All Si Silicon Silicon	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
22.983770 [Ne]3s 24 19 'S ₁₇ 20 'S ₀ 19 'S ₁₇ 20 'S ₀ CCa 19 Solution 24 Potassium 39.0983 [Ar]4s 13407 2400 2	3 4 IIIB IVB 21 ² D _{3/2} 22 ³ I Sandum Z Tianu Tianu A 955910 Tianu Tianu 7.867 An33d4s ³ 6.5615 6.8281 39 39 ² D _{3/2} 40 31	5 6 VB VIB 7 23 ⁴ F ₃₇ 24 ⁷ V Vanadium 50.9415 (Ar]3d ⁴ 45 (Ar]3d ⁴ 45 (A	7 8 VIIB s ³ 25 ⁶ S ₆₇₂ 26 ⁵ C Mn Hanganese 51.938049 Arija ⁴ 4s ² 7.4340 3 43 ⁶ S ₅₇₂ 44 ⁵ F	9 10 VIII 24 27 ⁴ F ₉₇₂ 28 ³ F ₂ Cobalt 58.933200 [Ar]3d ⁴ 43 ² 7.8810 55 45 ⁴ F ₉₇₂ 46 ¹ So	11 12 IB IIB 29 2s.12 Copper 30 63.546 54.09 7.7264 9.3942 47 2s.12 48 1s.0	Addinincum Sincon 26.981558 28.0855 [Nej3 ² 3p S.0855 5.9858 8.1517 31 ² P ⁰ / ₁₂ 32 ³ P ₀ Gaa Germanium 69.723 (Arj3d ¹⁰ 4 ³ 4p 72.64 (Arj3d ¹⁰ 4 ³ 4p 5.9993 7.8994 49_ ² P ² ₁₂ 50 ³ P ₀	1105/moles 30104 32.055 35.0473761 32.055 10.867 10.3600 12.9676 15.7598 10.4867 10.3800 12.9676 15.7598 33 45.32 34 ³ P ₂ 35 ² P ₃₀₂ AS Selenium 78.904 16.163 16.163 16.163 74.92160 Selenium 78.904 17.92460 16.173 17.904 9.7886 9.7524 11.8138 13.9996 13.9996 51 45.32 52 ³ P ₂ 53 ² P ₃₀₂
5 Rb Sr Rubidiur 85.4578 Sr KrK5s Kr/R15 ² 5.6949 5 S1/2 CS Cesium 132.90545 [Xe]68 Xel68 ²	Y ttrium 8:90585 6:2173 Zirconium 4:1242 (Kr)4d53 ² 6:6339 Z2 4 Kr)4d5 6:6339 Z2 4 Hff Hafnun 178.49 [Xe]41 ⁴ 5 ² 6	Nb Mc Niobium 92.90538 82.90538 KrJad ⁵ 5 6.7589 7.0924 = 73 ⁴ F ₃₁₂ 74 ⁵ Tantalum 183.84 Yungste 183.84 YxeJat ¹⁴ 5d ³ 65 ² YxeJat ¹⁴ 5d ³ 65 ²	TC Ru Jam Technetium (98) Ruthenium 101 07 s Ikrlad/Ss2 Krklad/Ss2 D0 75 6S ₅₁₂ Ree OS OS n Rbenium 186 207 OS smium 190 23 6s² [Xelq41 ⁴ 5s ² 6s ²] [Xelq41 ⁴ 5s ² 6s ²] [Xelq41 ⁴ 5s ⁴ 5s ⁴	Rh Pd Rhodium 2.90550 102.90550 Palladium 106.42 Palladium 106.42 8.3369 107 ⁴ F ₉₇₂ 11 77 11 Platinum 192.217 Platinum 195.078 [Xelq1 ⁴ 5d ² 65 ²	Ag Silver 107.8682 [Kr14d ¹⁰ 5s 7.5762 8 9938 79 ² S ₁₁₂ 80 ¹ S ₀ AU Gold 196.96655 [Xe]41 ¹⁴ 5d ¹⁰ 6s [Xe]41 ¹⁴ 5d ¹⁰ 6s	In Sn Indium Tin 114.818 118.710 [Kr14d ¹⁰ 5s ² 5p 5.7864 5.7864 5.73439 81 ² P [*] 1/2 82 ³ P ₀ 714 Pb Thallium Lead 204.3833 207.2 [Hg]6p [Hg]6p ²	Sb Te I Value Antimony 121.00 Iodine 126.90447 Xenon 121.700 127.00 126.90447 141.293 Xenon 124.94 ^{db} 55 ⁴ 59 ³ Kr14 ^{db} 5s ⁴ 59 ⁴ Kr14 ^{db} 5s ⁴ 59 ⁴ Xenon 131.293 83 ⁴ S ₉₂ 84 ³ P ₂ 85 ² P ₃₂ 86 ¹ S ₀ Bi POO Astatine Astatine Radon Radon Radon 1Haj5p ³ (Haj5p ⁴) Haj5p ⁵ IHaj5p ⁵ IHaj5p ⁵ IHaj5p ⁵
3 8939 5 2117 87 2S _{1/2} 88 1S ₀ Fr Ra Francium (228) [Rn]7s [Rn]7s ² 4.0727 5.2784	6.8251 104 ³ F Rf Rutherfordia (261) (261) (261) (261) 6.0 ? 57 ² D	7,5496 7,5496 7,5496 7,5490 7,5490 106 Sg Seaborgit (262) Seaborgit (266) 106 Sg Seaborgit (266)	7.8335 8.4382 107 108 Bh 108 Bohrium 108 (264) 108 *** 60 *** 60 *** 60	8.9670 8.9588 109 Mt Meitnerium (268) 110 Ununnilium (281) 0 62 7Ea 63 85°	9.2255 10.4375 111 Uuuu Unununuium (272) Uuub Ununbium (285) 64 °D ^o 65 °H ^o .	6.1082 7.4167 114 Ununquadium (289) 66 °1 67 41°co 4	7.2855 8.414 10.7485 116 Ununhexium (292) 88 ³ H S9 ² F ² 70 ¹ S 71 ² Den
Number Level Symbol 58 ¹ G ^o Ce Cerium Atomic Level Cerium Atomic [Xe]4f5d6 ² 5.5387 Ground-state Ionization Configuration Energy (eV)	Laathanur 138.9056 55769 89 ² D 89 ² D 89 ² D AC (227) [Rh[6d7 ²] 5.17	Ceium Praseodym 140.116 Praseodym 140.116 [Xel4f5ds ² 5.5387 5.473 90 ³ F ₂ Thorium 232.0381 [Rnipid ² 7s ² 5.897 [Rnipid ² 7s ² 5.897 5.3067 5.897	ium Neodymium Promethiur 144.24 Ixel4f6s ² 5.550 1/2 92 5.62 1/2 92 5.682 1/2 92 5.6 1/2 92 5.6 0 0 Np 1/2 92 5.6 0 0 Np 1/2 92 5.6 0 0 Np 0 0 Np 1/2 0 1/2 Np 0 0 1/2 Np 1/2 1/2 1/2 Np 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 <th>Samanum 150.36 [Xe)44⁷6s² 5.6437 Europium 151.964 [Xe)44⁷6s² 5.6704 94 ⁷F₀ 95 ⁸S⁹/2 Put Plutonium (244) (Rnj6⁴7s² 6.0.26 Americium (243) (Rnj6⁴7s² 6.0.26 Americium (243)</th> <th>Gdd Tb Gadolinium Terbiuh 157.25 Terbiuh 158.92634 [Xe]41²5363² 6.1498 5.8638 96 9D^o Curium 2 Curium 2471 [Rn]51²637² 5.991² 5.991² 6.1979</th> <th>Dysprosium 162,500 Holmium 84.9303; ysa 1 93 1 Cf Essteinium (251) Raj51⁴7s² Einsteinium (252) Ignj51⁴7s² Einsteinium (252) Ignj51⁴7s² 6,2217</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th>	Samanum 150.36 [Xe)44 ⁷ 6s ² 5.6437 Europium 151.964 [Xe)44 ⁷ 6s ² 5.6704 94 ⁷ F ₀ 95 ⁸ S ⁹ /2 Put Plutonium (244) (Rnj6 ⁴ 7s ² 6.0.26 Americium (243) (Rnj6 ⁴ 7s ² 6.0.26 Americium (243)	Gdd Tb Gadolinium Terbiuh 157.25 Terbiuh 158.92634 [Xe]41 ² 5363 ² 6.1498 5.8638 96 9D ^o Curium 2 Curium 2471 [Rn]51 ² 637 ² 5.991 ² 5.991 ² 6.1979	Dysprosium 162,500 Holmium 84.9303; ysa 1 93 1 Cf Essteinium (251) Raj51 ⁴ 7s ² Einsteinium (252) Ignj51 ⁴ 7s ² Einsteinium (252) Ignj51 ⁴ 7s ² 6,2217	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

[†]Based upon ¹²C. () indicates the mass number of the most stable isotope.

For a description of the data, visit physics.nist.gov/data

NIST SP 966 (September 2003)

三角格子

http://hiroi.issp.u-tokyo.ac.jp/data/crystal_gallery/crystal_gallery-Pages/Image31.html

高温超伝導物質 をより忠実に再現したモデル 酸素: 銅:

新しい物質の状態

極低温に冷えた原子の集団を使うことによって、極めて高 い制御性で、新しい物質の状態を作り出すことができるよ うになり、物性物理学に新展開をもたらしています。

強い相関を持った原子の集団 ボース粒子とフェルミ粒子の混合系 大きなスピン自由度を持った系 長距離で相互作用を及ぼしあう粒子の系 人工的に極めて高い"磁場"が印加された状態

強い相関を持った原子の集団

証拠"

http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/mulslid.html#c4

粒子間の相互作用 大:U>>J

粒子間の相互作用 大:U>>J 格子点に局在

強い相関: 隣に原子があるから隣にいけない "モット絶縁体" N. F. Mott

小 ← 光格子ポテンシャルの深さ: $V_0 \longrightarrow$ 大 U/J

"運動量分布の観測"

U/J:大

新しい物質の状態

極低温に冷えた原子の集団を使うことによって、極めて高い制御性で、新しい物質の状態を作り出すことができるようになり、物性物理学に新展開をもたらしています。

強い相関を持った原子の集団 ボース粒子とフェルミ粒子の混合系 大きなスピン自由度を持った系 長距離で相互作用を及ぼしあう粒子の系 人工的に極めて高い"磁場"が印加された状態

"電子"はスピン(内部自由度)が2成分ある 雷子 "原子"は内部自由度が多い 電子 中性子 陽子 (原子は、"電子"と"原子核" 電子 電子 からできています) http://www.vonden.co.ip/life/kids/museum/survev/atom ¹⁷³Yb原子:スピンが6成分 例: さらに対称性が高い SU(6)対称性

SU(N)対称性とスピンの量子状態

N=2の場合:

長距離の磁気秩序 (反強磁性ネール秩序)

N>2になると 量子揺らぎが大きくなり長距離の磁気秩序が失われる!?

A. V. Gorshkov et al. Nature Physics, 6, 289 (2010)

P. Corboz et al.

P. Corboz et al. Phys. Rev. X 2, 041013 (2012) PRB 86, 041106(R) (2012)

新しい物質の状態

極低温に冷えた原子の集団を使うことによって、極めて高い制御性で、新しい物質の状態を作り出すことができるようになり、物性物理学に新展開をもたらしています。

強い相関を持った原子の集団 ボース粒子とフェルミ粒子の混合系 大きなスピン自由度を持った系 長距離で相互作用を及ぼしあう粒子の系 人工的に極めて高い"磁場"が印加された状態

2次元平面を運動する電子に高磁場を加えると...

2次元平面を運動する中性原子に高磁場を加えると...

"何も起きない":電荷q=0!

実効的に"磁場"を生成させることが可能!!

実効的な"強磁場"の生成

極低温原子がもたらす物性物理学の新展開

レーザー冷却・トラップ:

ボース・アインシュタイン凝縮、フェルミ原子超流動

光格子中の冷却原子:

多様性 強い相関を持った原子集団 大きなスピン自由度を持った系 人工的に極めて高い"磁場"が印加された状態 各格子点の単一原子の観測と制御 素粒子理論のシミュレーション

[WS Bakr, et al., Science 329, 547(2010)]

極低温原子がもたらす物性物理学の新展開

レーザー冷却・トラップ:

ボース・アインシュタイン凝縮、フェルミ原子超流動

光格子中の冷却原子:

多様性: さまざまな原子、さまざまな格子 強い相関を持った原子集団:超流動ーモット絶縁体転移 大きなスピン自由度を持った系:SU(N)磁性 人工的に極めて高い"磁場"が印加された状態 各格子点の単一原子の観測と制御 素粒子理論のシミュレーション

[[]I. Bloch et al, RMP80,885(2008)]