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Spectral Characterization of High Harmonic Generation
from Solid Targets Driven by the T® Laser
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Abstract For the search for Giant Pairing Vibrations, theoretically predicted collective excitation, we
need a high-efficiency measurement of (0,,°He) reactions. To realize such measurement using Large
Acceptance Spectrograph (LAS) at RCNP, we optimize ion optics, size of stopper for beam and elastic
scattering, using ion optics and orbit calculation software.

© 2026 Department of Physics, Kyoto University

IR SN D EMBIRIE L L CERIEENH VD | 2 UG IEMERELIC B TRk
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Abstract The correlation between 111Cd(«—1111In) spin relaxation and viscosity in glycerin solutions
across various concentrations and temperatures was confirmed and quantitatively characterized using
perturbed angular correlation spectroscopy. This provides a foundational step for characterizing sub-100
nm droplets, although practical challenges remain for application.
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& U T FRIIZREDS B & 2372 WInCls ORI 2 L7z, F£72, Demille |2 XV #tE STV DR
D In A F 2 ORNLT- DAY ARFI~OFBB 2 HERRT 5 72D, BT OBLE DS PR D B\ AR
ETH Y ELGARNEE LW [In(H0) & 725 X 9IS B2 N2 TR D pH % 3 LA T ICHRFE LT,

HCA(—"Mn)D A B FEFMOPREEER A (sec?) 1, AGMEARI n = 27.7 (mPa-s) Z Bl K B~ &
5 U MBI Z R LT, £ OMBIIAERREL D /N S W CIEEBIBIFR I 72 5 & FR$ % Abragam & OF
AR [4]ORE AR B D R & WP CIE L BIBIMRIC 72 5 & F9ET % Marshall H OEEGGR[S]E B < —E L,

A=(24X1057) /(1 +1.3X107352) (1)
EFTZ LSk (Fig1), "Mn % HEETHEIC
BATEE, ZOMBEZAWT, PACIAIC b
K % R O RHEAR BN © % 5 WIS ¥
HD, i
— 5T, pH KFHEEDOHE COMEIZHNT 2 # }
pH 73 3.5 LA L OB CIThiME & 2 B i ] }
BB 72N R S o 7272 A Eldid A \
BT pH 2% 3 LT OBE I DA vl Re . k‘ %
BB, A AR DERED pH 2 |ttt Y

WETEHAREMELRELTWVWDLEHEEZLDL 1 10 100 1000

j’/l,é Dynamic viscosity n (mPa-s)
o

E ® pH-adjusted
A= (2.4x10°0)/(1+1.3x10° 1)

) 8
=
=)

Il

g
e

Decay constant A (sec -

Fig. 1. Correlation between viscosity and spin relaxation
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Spectral Characterization of
High Harmonic Generation from Solid Targets
Driven by the T® Laser
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Abstract Spectral characteristics of high-order harmonic generation from solid targets driven by the T®
laser were investigated. The intensity scaling and spectral decay of low-order harmonics were measured
with and without a plasma mirror. These characteristics indicate that the measured harmonic emission is
dominated by the CWE mechanism.

© 2026 Department of Physics, Kyoto University

High-order harmonic generation (HHG) driven by intense femtosecond laser pulses has been extensively studied
as a source of coherent extreme-ultraviolet and soft X-ray radiation, enabling attosecond science in gas-phase media
[1]. Despite these advancements, gas-phase HHG is intrinsically limited by low conversion efficiency and restricted
photon flux due to the low atomic density and phase-matching constraints. HHG from solid targets has therefore
attracted increasing interest as a promising alternative due to its high density and scalability [2]. However, the
underlying generation mechanisms and intensity-scaling behavior of low-order harmonics remain insufficiently
understood [3]. In this study, we investigate the dependence of harmonic yield on the incident laser intensity and
the power-law decay characteristics of the harmonic spectrum for low-order harmonics (2nd—7th) generated from
solid targets driven by the intense femtosecond Ti:Sapphire laser (T® laser), including their angular distribution and
a comparison between plasma mirror on and off conditions. The experiments were performed using the T® laser to
generate high-order harmonics from solid polyethylene targets. Single-shot spectral diagnostics were employed to
characterize the emitted harmonics, with calibration applied to ensure quantitative reliability.

The measured harmonic yield demonstrated a weak dependence on the incident laser intensity, following a power-
law scaling of the form I, I(I)J , with an exponent close to p = 1 for low-order harmonics. The spectral decay of
the harmonic intensity is consistent with predictions of the Coherent Wake Emission (CWE) mechanism. In contrast,
the measured angular divergence deviates from the simple e ——

0, /n scaling expected from the Relativistic Oscillating O 2nd: p=1.15
Mirror (ROM) mechanism. In addition, the use of a plasma O 3rd: p=1.01
4th: p=0.99

mirror improves the stability of the measured harmonic

signal by enhancing the temporal contrast of the driving 5
L 10

laser pulse. These results indicate that the low-order
harmonic emission from solid targets under the present

experimental conditions is dominated by the CWE

n

I (arb. units)

mechanism. The present study contributes to a deeper

understanding of low-order harmonic generation in solid- 18 19
target HHG and provides important insights for the 10 10
development of compact and stable coherent short- 10 (W/sz)

wavelength light sources. Fig. 1 Intensity scaling of low-order harmonics

from solid targets driven by the T® laser.
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Abstract Mid-infrared lasers achieve the same normalized vector potential at lower focused intensity
than near-infrared lasers, enabling relativistic high-order harmonic generation at lower cost. We
performed simulations of femtosecond mid-infrared laser interaction with a solid thin film and found that
optimized plasma scale lengths yield harmonics exceeding 14% of the incident energy.
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Abstract To understand lunar formation history, we developed a compact camera using an X-ray SOI
sensor and a coded mask for 1-km resolution elemental mapping from a 100-km lunar orbit. Simulations
and experiments demonstrated its imaging capability. Additionally, thermal and structural verifications
confirmed the design's feasibility for CubeSat deployment.
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Fig. (a) Fluorescent X-ray mapping of the lunar surface from orbit. (b) Spectral simulation results.
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(c) Designed and developed compact X-ray SOI camera
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Abstract Little red dots may be powered by black-hole envelopes. We compute 1D envelopes including
black-hole heating and nuclear energy generation with radiative and convective transport. For Mgy =
10°® Mg and Tpn = 6000 K, nuclear burning can exceed Eddington luminosity at high M, removing
hydrostatic solutions; equilibrium requires My, S 10°Mg, or an inner disk within a few times
Schwarzschild radius.
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Fig. 1. Region of parameter space in which
hydrostatic envelope solutions are expected. B ks b P =2
In addition to the Eddington limit on the -
envelope luminosity (blue region), nuclear Eéms_ Lnuclear = Ledd
burning introduces an additional constraint Eﬂ
(red region). At low photospheric £
temperatures ( T,n ~ 6000 K ), the allowed E‘ 10%4
envelope mass is restricted. % . %
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Simons Observatory ZEE&IZFHLS Sparse Wire Grid
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Abstract: The Simons Observatory aims to observe the B-mode polarization of the CMB and detect
primordial gravitational waves. To calibrate the polarization angle of the detectors, we use the sparse
wiregrid. We measured its wire deflection and reduced it, and evaluated a tilt sensor to be installed with

the wiregrid.
© 2026 Department of Physics, Kyoto University

FH~A 7 2R CB) Ty 7S OB TH Y | RIZbRBICE 2 FHKGT O TH D, €
I E NS BIEICE DL £ TORL REERNEENTEY, ZNE TICOBOBEIC L > Thx 722 &
BB TE T, BAEIZZ OGN Z — o ORERESER STV %, OBORIL/ S F — IR —
REBE— RO THENH Y, BE— RIFUAEROIHLE 725, b LFUAENEIC L 88— FAER SR
E, A7 —va VHEREEMT DEEHLE 72D,

Simons ObservatoryZEERCld, #FHKS200mDF Y « 7 X B~ iR E L850 Eimdi 2 v COMBIR G D
BNEIT 5, 3BO/PNORRZEES (SAT) & 1R OKROREES (LAT) O 5 HSATIZRA A & — L OCMBBLANZ fii
fELTH D, SATOESITITA LT EOTESHHERNERE 4L, 7 7 T L o CTENENORER DR E ST
ORI L CTRE AR, BE— FOBINC X » TRMBE DR EZBRET 5120, 2 oBHEROREm[ D
JEEE TR %20 1° LUN OFSE CHERL T D MENR H D, ZOEREZ LT D720, ANR—RATA¥Y—7 1V v K&
FAWT AR E S AT DSSATICHS S S v T A (1,

TAY =271y RiZUA Y —0RESNIZ I &R U ROBERRLE AT 720, T4 Y —0 ORI ERE
PEEOREEICERE T 5, TOROEOSNIZVA Y —RzbA T EREREE AT, 22T, VA4 ¥—0
Tebha QB CHET 248 Fig) % L, ZOREMEEHNTIVAY—%2EVET Z & ClhbhiEsr
0.05° 7750.02° ETHIT 5 Z LTI L7z(2], KGR TIE, VA Y —DORMERNEERTHZ LT,
b EA & 5120.015° £ THIR LT,

TAY—2V v ROREYHE & KEEE OMOAELZHIET 27 OICEANZRAEHZHWD, L LET
TFIeCIRE LT B2 IR ISR Lo TRED A 71 v F$0.3° 845 2 LAV L-[3], ZofEs
FRDT D T2 OAMIE I T 7o ffil & 72 4D DA EEEE (Fig2) 13 LT, IREHRAAE - BRI - RAIMIZR
EMEDO3 OB HRHMBZ1TV, BRI Ch DR 2 7- T A2 %E L,

Lt BEEHKROUA Y —7V v ROWEEHECAEROF 2 55 i 21T 212, AX—RAUA¥—7V v F%&
AW RAABKRIEDORRAEIZOWTHIETH H0. 1° =R TH I ENTE D RS, FUAEEORI O
BECTHDHT VY NAD T = LT, BELG 2 5T\ 5 EIRfE 0. 032% —HTlA) 32 O ZRFRIEE % 55
T 5,

Fig 1. A system to evaluate the wire sag antomatically,  Fig 2. A system to evaluate the tiltsensors,
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Abstract In the LHC-ATLAS experiment, we developed a new method to distinguish the Higgs boson
from the Z boson using the spin of tau particle pairs via machine learning. As a result, combining this
method with current analysis can improve sensitivity by 10%.
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S ART ¥ VOTRIRITEZE O ZEMCEIIHES L BHICBER L TRV, £ OFEM R BRI
R ORGECHTEL OB R ICBWTEETHSH. LirL, TORIRI iikt‘?é%%ﬁ’} IREINTEDL
T, By J AR OB EROBENEN L 705, BOHEAGEREZMET 5720121, b v 7 2R+ (h)
2 2 DORFFCAERR ESND & v 7 AR AR R 2B L, %031:.77—§§f“’?377%ﬁ’] H3A0 A E T 2 4
ERbDH. AHFOe y 7 ARANA NLT +—20%b, bIRFTOE v 7 AR 032 U3 HIET 5
E— K (hh — bbrr) 1Tt v 7 AR F-XAEROH T HRESIG LA R E <, WRFR LDV TD
R L OREEREEZIT) ECORANGEME L THEESN TS, [1] —F T, &b v 7 AR5 AR D
WrikifF X — b > 7 AR & AT TR E <, HRITKRE LTRETH 5. BIfEDOE » 7 AR+
KAERFZORKTIE, by 7 2ARFEHFRFR (FEIZ Z 1) 2T 572012, Z TR FXORE
BERHX URLA O S FHVRS A > Tl L T 7. (2]

ABFFETIE, b SRR THDE v S 2KkF (A 0) & ZhiF (AEY 1) DR
DEWZHEHL, TOERNSELDZ TR ONY T 4 1EHE W8 72 225805 FiE 2 Bl Lz,
BRLT- O A B AFRIL Y TR ORGSR SN D2, T OFRITWER DR TIXIT L A ETEH]
STV, KR TIEL, A OEWVORIIERNT HIFREAE L, hazHnicsiEr vy X
LOFFE L, D5 %i FEATE L 7.

B E ONEIZIE A -t BEXOY Z 5 10 ® MC =2 b—v a7 %ML, Boosted
Decision Tree (BDT) & Graph Neural Network (GNN) %i@ﬁﬁ L7, Uk OREET— R &I
BN ZATV, ENENOIE L TEAIT 21T 9 2 & THRAEBIRSBEMEREZ TN L7z, £ ORE,
%%@%%7m%umﬁbtﬁm,%%$2%ﬁ4W%&ff%é LR ahie. (Fig. 1)

X512, K BFEM ATLAS BHZOBREE Y I = b— 3 U EGATEY 70 bl - T PERERHT
bIToTe. TORER, Z VR FORREE— REiRo THET D HRN ) A X0 SHRENMET 5
e LTZ.

LHC TiE, 2030 26 @i LHC @i
FEINTEBY, R EOHIMNA HIAE N
TEY, by VT AGAERDOIR L ?Eﬂﬁﬁiiﬁ’@éh
L2 EnHfFEN TV, @EE LHC 28105
b v 7 AR xR ORKE T R8I, ztﬂiﬁ?‘“

DFEERAEDLED Z & T, ¥ TR xRk

NI ACHET HELICBNT, 5 % D

Em ERRIAEND. 2L, 11 % OF —Z#

DFEY, K1 FOEERICHY T 8ETHD.
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Abstract We investigated the feasibility of isobar separation using a multi-radio-frequency quadrupole
(MRFQ) for the SCRIT facility. Numerical simulations and prototype experiments were carried out to
study ion stability near betatron resonance. Resonance-induced ion loss was observed, suggesting the
potential of MRFQ as an online preseparator for radioactive ion beams.
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Fex OWE 7 v—>7"Cl%, SCRIT (Self-Confining RI Ion Target) &\ 95, EFEHEY » Z7HICR
R I ER 2 VERL3 2 YR A2 BA%E L, 2022 4E121% 137Cs ZHERY & L= B HEL =R Sh L 7= [1],
BfEIL, —EEEE TH D 1828n 2R L LICBE T BELEROEBLZ HIE L T 52, [REEEAZHD
RDDOF T A TEIRE E— AL MG 572012, 0 fREE4 x 10* 0L b, FEAGRIEE 99%LL F . ALFRRE
108 ions/sLL 72 & OB A 7o TRl EAR S BEEE S ME L 70 b, — 5 CEBEFO S BETFIETIX, fifse -
LR « W3R« BREHFA L W o B Z RIS T Z EDBRETH D . Fiiz o BETEOZE AR D
HNTWD,

Z ZCARMFZETCIE. ZJE% RFQ (MRFQ: Multi-Radio Frequency Quadrupole) % HV 7[R K5y
BETFEATRE T 5, MRFQ X RFQ OWUEMRESIC L DA 42 ORT miEshHlE 2 5t s L, B o)H
Bk % > RF&EEE DC EEEZMAGOE CTIMERORHEZIBELI-bDTH S, 6T, &
MRBLE L L 0 FEfc skt U Clalls L7z U SRy (skew B%57) ZEAL, v 2 IROR—F ko o H4g
T 5 Z LT, BF O RFQ EE/SBER L D L@@V il L W EE&SBEZ 1TV, RIEED
FrEAZABEICT 5, 26 ; 3000

AELIRCTIE, TOFE R E LT, b4 I
BB FH R & R EREEBR D — DD HIEN D
MRFQ D FERERREME 2 570 U 7=, BUEF A
TlX. MRFQ WNIZHIT B A 4 v iEs) 2
& — BTN FE D X 2 E EIk X %
L, 2 IR_—% b a LR En 5 T 16
A —Z OB & SR TOREM 14

(EFE) OBETH~, BEEERVENS
DN DLFMEE T, FEBRTIL, UEME
B (main M) & skew BHEAHRS5 |
MRFQ 7' v % 14 7% L O RF/DC &L % 80 90 100 110 120 130 140 150 160 170
FIINT % s JE eIl 2 B4 L7, SRR RFL Voltage 1V]
VAT LIE, A AP E LT EBIT, 347 Fig. 1. Ion count rate map after 1 ms trapping in the MRFQ
WA, MRFQ. Fx > /L b bER
ENDHZE—LTA L THD, FEBRTIE, EBIT 26D A 4 B — A& 0HAZ8E LT, HED m/q D
AF 72T % MRFQ IZEAT S, LT, £ 42 MRFQWNIZ1ms 7 v 7 LI=RICHEH L, £D
INEZFHET 2 FiEEHWT RF {MCkT 244 ZF@#aRE L7, TOME%L Fig.l 1" 7, 2K
NR—% ~a RS RHET 2 FEI CHEH A A I E O JCD 3R Z ., BRI LD 23 BRI
I, ERREEESBEO TN 15T, —F | RIEBRSEMTIL, skew Eii~D RF HINOA HEIZ
X DWW BRI R 2T S Ve o 7o, EEIR S FREFHIIZIZ AR OB N LETH L H DD,
AWFZEIZ LV MRFQ % H\W 7= [RIE RS BEIZ 7 72 JEEE 00 A ZIMED R ST, AF{EIE, SCRIT 35k
B4 T4 RI B —ARHLERES & L COIHDB IR S 2,
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Abstract AXEL experiment aims at observing neutrinoless double beta decay with a xenon gas TPC. We
have improved the energy resolution by a new correction method. We also have developed a voltage
distribution system and a field cage made of FPC, which are important to enlarge the detector.
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—a— RV OEEPMOFRA & i U TIEFIT/NS OB, FHO N Y A U EIERFR ORI,
Za—RFU PR E R DR—METHL~I T THEEETLHIRLITHMATE L LE LN TVD,
Za— R ) ) O~ITFTEEELET DI, ==2— NI 2DV EX—XAE (0vpp) 8L
HZMBENRH LN, ZHITEED E L THLHEFICHREFRTH D, TOED, mT X —0fffe, 55
HHHERR, RKEEDORER &0 ) FE2T- 3 2 E DN ERE R 0VBRIERDT-DICEE ThH D,

AXEL ERTIEIINODOEMETIET I ENTED, WRBHRRD IO O EmEX | /) T A% -
Time Projection Chamber & BA% L TV %, AXEL #HH#51Z ELCC & WO ME Otz Tk . &
BE¥E -7~ 5 Electroluminescence (EL) AR LV HEBON T2 RASHETHREHLTWD, ZHUTED &
WIMHERE CR— DX N X —ZHETE D, o, X—ZBROMYZFHEK L., ZORKREHNT
REAHRE R FR LY RT 22 AETH D, ABITRKEEDREEZ W5 72D T a2 KA
fEL., EFEOOVEREER Z 5t L T\ 5, ZAUZANT TR T, =V —0fifREm _E O 7= & OfiffT
Tkt & KEURIZ AT 7= BB R I B D LA 72,

OVBBIRZR D T D T )L X — 3 fiFRED H B IZ0VBR D T F /L X —THAE MR 0. 4% THHN, 77
FERLTE TV, ZOFKD 1 22, BHF v kMO ELgain (BEEET 1| O bRAET LN+
B Wiz HDMIEDORENH D, TNEUGET D720 MERKIL 3 REFRE D Z > Z L1772 > T /= ELgain
FIEWCINZ, &2 CDOT v &#HE Li=T — 4% T ELgain flilE & 1T 2 T THEZ A L, #iEICH WD Ka
P X BROR A BN &7, WEORE T — Z Tk U TIRENT FIEZ % T L ¥ — 0 fifhe & bk
L. 1593keV 233U T 0. 2180. 056% %) DT /L ¥ — S REE DL E % feil LT-.,

BFE ELCC T, MHEAEIZ 1 HoEmE W THEEBEZEIML TS, LaL, AXEL itiess
KL L, LEDONRENEN T 5121, ELCC D=y s Z L I(ZEBEZEIN - Hl#+2 2 LN
b, 100 2=y ML RIZH LT, BEFEORENELS, mEELHE I TIHETE, 2=y MK
OHANZHKIE LT W& WD Ffhb 27z LTCEEGIEHZIT O 72D, AT A4 RT 4 4 =) FlEx
EBRLU, RIEEEZEERICREL, MEBRY OBIERENMTADL I L 2R LT,

TEHEE % ELCC ~EES RY 7 NEHREZEKT 57—V K —Ti, kO O TIIy RHgs

AT HHRENZ N « T2 A FPRERKTRE(EREHE LW EORBENH - 72, AWFIETIE, KHEHHE
& REULZWSEA[REZ2 7 L v 7 v 7" o R (FPC) & W
D7 4=V Ry —VaBR LT, ME- T —7 v 7%
PHIECEx AL 912, £/, FPCRAILZZE L CEB TS L1
KFEE & FPC kit L7c, BYEL7 FPC 7 4 — /L R —T T
M ERBR 21T\, & 2 H A 5.68bar FIZHBWT, KU 7 K
EH O HEE CTH D 100V/em/bar FERIZ S EE 22 B EEICK LT
98. 1% ~DEEZfER LT,

FPC 7 4 — )V R —2IZBWCTF ¥ — T v I8 b K 7
NEGA~DOEBENH D0 E D D EFHMET 572, 180L RAIEHK %

FAWTRIEZIT o 7o, T ORER, T —T 7 v 7 b P
nNoHL0E—ET 2808 Ho72b 00, EEEEOIERBIC X

DHRELHD EBDONLTIZD WIREIITRGR CE 720> 272, 4 Fig 1. Field Cage made with FPC
BER DI A2 1T72 - TL,
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Abstract A modulated electron beam ion trap (MEBIT) was constructed to explore a portable static target
for radioactive nuclei. Electron beam modulation and basic operational characteristics were
experimentally demonstrated, providing a foundation for future studies toward static target applications.
© 2026 Department of Physics, Kyoto University

REZER AN T O BOSHFTRIE, G R EIR R OB ICS W CEHEE TH L0, BfEE
T H 5 WEENFIC L ARETFETIE, ROSAERR T OEE S 7 FOEEAYZ K 5 = L F—
SFEREDTHIIRNEET ST, B EREICAREN RSN FET D, ZNbOMEEZwRT 5 Fike L
T, REEEZDO LD EFIENE LTHY, RERY 1 —7 B — A% 5T 2IEES I K HHES
RN BEENTE 72, NEEEIEEROFEF] & L TiX, SCRIT (Self-Confining RI Ton Target) %
DHHNTEY, BFEMEY VI NTEFE—LOEMEMAT vy VEFH L TRZESA 4 %
PACIAD S Z & T, R THD TARLELHILENZEMA{E LT, —F T SCRIT 1%, E1F&EEY 7
R AET D A0, T v 7B DEEH A 4o DSk, IR ARER DAy 7 757 KEn
STEREEA L TBY, L0 Ak CIHAMLEO S W E B EIT~DOFR B RO 5T\ 5,

AR TIE, D OFEEEZEEE 2. A A2 OWRFEI 72 A b OIS0 B AT A DR BRI % FTREIZ T
DAL ERF RN OFBZ B Uz, BEE L T 28 IR OMERRIT, ZE 101 cm™2, #iE 90% DL
by b7 TR 1 s ICBITAAEGE 95% L ETH D, BRI TIELE LT, B E— AIRREIAH
ZEBALILEFE—LAA2 T v (Modulated Electron Beam Ion Trap, MEBIT) # MW7 ARZEE
B EEN OMAZHEZ L7, MEBIT X, 1 —AOZRERICL ARG NT v 7 LEmIC L Al
FHE R T v TEIEARETD EBIT ki, BT E— ABROMERHZHAGDEZEEBETHY, B
E— AL D NIy I DCEMME AR D 2 & T EEEMN A/qIKTE LTS N Ty T REEOHIE
ZRHETbLOTHD,

AEtFmsCTiE, MEBIT B0 EH g2 EtT 25— L LT, MEBIT ¥ X7 ADHEEER
KOS e B BB A AT o 7o, MEEE L7 2E L, 188, YV /A RERA. N7 v 7 Eift, &
E—2aal s RN FROSIEAB I OT v 3L be bR T 5, BT
MOBHENTZEFE—LITY L A RS L - Tl ENICER - kS, BHIIITEFE—L
DZER B AR T v ¥ b, Sl ANIXERENIC LD HFUFFERT vy VT L > TA A R =oE
MBI b7 w7 a5, BFHROZ Y v RICEEEBEZENT S 2 LT, AR E M -EFE— L
AR L, B2 S RNHEF E— L0k « BIUEERS T OZEFHE I O J& R B 270 &
L7, & 512, MEBIT 55
H L7 A 7 % N D o Hri
FAIZ L > THEREME A/qT
EITERIL, WG E Rl L7
NHT v b b e e
TAF U HERMET L L
T, BrE—ALREMTIC
BUAAF kB E TN
776

Fig. 1. Systematic diagram of the experimental system.
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Abstract Previous studies suggested Ni abundance excess at some binaries. At this thesis,
systematically measured Ni/Fe abundance ratios in several X-ray binaries using high-
resolution XRISM/Resolve spectroscopy. Diagnostics of Ka lines from low-ionization Fe and
Ni and absorption lines from highly ionized ions, show Ni/Fe abundance ratios of 0.79-1.72,
consistent with solar.
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a7 NRIE (FEFERT T v 7 R—L) LHEENGR D X FRERETIE, [EENDOEREREAIC
FEVGRT) 72 X MR E BT 5, 20 XEBSEEWE (FERERE, BEMNRE, HEERRE) 2RNT52 L
T, T - AREBE TR OHOEERRCEREA A ORI A U D, X FRE R O SRR OAFZEIX T Fe
Ko BEREANE B S, %5972 Ni OO HE113D 72 <, 0A0 1657-415[1]° GRO J1655—-40[2] 72 & 0¥k
BNZER BTN, B E WU 24 U2, & L THERm-CEREEZ SEERFEEEZEZ N
%, MHED Fe & Ni OFFERIT—RICKGHR TH 0 [3], FrHl72 e B A BGERENRE 5 L22WR Y, X
HUR THEI S5 Ni/Fe F1EE & KBEALALEL (—0. 053[4 IV MEAS I S5, Las L, X BhEE GRO
J1655-40 TIT KRB (4112 _TE WY Ni/Fe bt (Ni/Fe=6. 7£3. 7) B3R S n/=[2], 2D X 97 X
HELEE D B 72 Ni/Fe FLDJRIR & U TIBFRRICR AR [2]° s 7'rE X [5], rp 7'rEX[6]DFLEIR
REINTNDN, &5 BN NLERFIET —~< 28> T D, AAFFETIE, 2D X 57 Ni @M
O X BEETHENSNDINEFHRD 720, X BRCHE XRISM [ZE#H Sz~ 7 ahnl) A—%
Resolve DE\T RV X — 3 fREE 2 Y, TERITRR 23R EEC o - 725555 72 Ni BRI KX OWIER D% H
% i, B D X R T Fe & Ni OMERR « WO 3 YMENT 235 Ni/Fe b2 RAEANCHIE L7z, KE
HEIRRED Fe & Ni D 6.4 keV & 7.5 keV @ K o BOEHERR X, FYET7 2% $ D XA Vela X-1, GX 301~
2,GX 1+4,Cen X-3 ® 4 RIKIZTHH T, TNENOERE T T v 7 ZZIE Lz, H#OGIERL BRI
DOWrEFED Fe, Ni [HOEWZ HB[E L CTHIIE LTRSS, S0 B8 H S 7- Ni/Fe FRIZORBERARL b
(4] & —F L=, EHIT, EPEEHEIREED Fe 38 X UNNI OWINARZ 779, Her X-1 28N, He k Fe d 6.7
keV @ He o WILHR, H AR Fe @ 6.9 keV @ Ly o WRIN#E, HER NI D 8.1 keV DOWRINHREZ Mgt L7z, WIUHRD
fENT CTIE, A A2 OBHRIRIESC, B ORI DT EMR S D5, A A AR E I X 2RI O
&N B RE L2 T uE, W ORE L 2 STUR RIS IE LS BT 5 Z E N TE RV, £Z TR
WRZETIL, A A A k3 2 W O AR O 22 b & ffAT 9~ 5 iR B R 2 B 58 L. WRISURR O oA 1
NOEY IR ERS A RS D L CTRINEN S TRFELL A HET 2 FEEIRE L, TOTEE Her X112
A U7z fb S, Ni/Fe=0.79+0. 73 & KAk [4] THIF L L7z Ni/Fe FIELLAZRD H Z E N TE T,
L7zl o T, AlExtg L Lz RIKCTIXEATHZE T/RIB X7z Niadbf % 5] & i = 3 e 28k 72 4
BB T L MEE LN EEZ LD,
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Abstract We developed a pattern generator enabling semi-autonomous control of digital XRPIX
detectors. This approach enables a significant reduction in the number of digital 1/O lines, supporting
future large-area detector systems. Emulated on an FPGA and tested with XRPIX12,
event-driven readout was successfully achieved by adopting appropriate operational
procedures.

© 2026 Department of Physics, Kyoto University

10 Moz %2 5 KE &R, HEELOR T EER AL 2 3, TFEo 1 B2 O 5380
Mo R OERIGER r H ~HF)NZ, ~103 Mo/yr ([ZEET 2 KB 72 E B i3 A U T 5 ATREME DS /R
SINTWA], ZhdRaBE 2O MBI 72 B A ER 52 EEEKETHY . ZO-EEKHICL -
TR S Ve R EWE O ECZEM AL, BLEOIRE A K3 2 BN R CH D, TOE 7k
BAETIEE LT, BISERICERE & 2REWESHEER L, MASHZEET 7 A6 E &b
X BB BT HivD, 1~8+ keV ITHOTZ D JEFIRANRY Mvnd 77 A<l K OEEWEIC
LW EAHEE L, TN O ORI Z B2 2 & T, BREmOEEMHERELA MWD = L3k
LD, LavL, (EROBHEEE TIX. 10 keV DL EORH X SRHEHIRIZH VT, ERE Bl 5 FHR
WCBKNT DNy 7 7T 00 RINEBT 5, 20Oy 7 7570 RORKREBIZIZT 77 47—
N& WK RSN AR THL, L, =L RDOA X hL— R ME1-10kHz & &<, 7EkD
FEHRHERTH D X # CCD ORI FRERY 1 s) TIEXIS TE e [2],

F Z T2 1TE O XA SOI(Silicon-on-Insulator) B° 7 T /L #iH#s [XRPIX] #ZBHFE L TW\W5, &£
7B NREERIBIC L DA X NAEE XA I T EFAREREE L, EEEICNZ TA X2 hOfL
&L gt E 5, ZOMREZTER Lz T4 _y MEREh A L) 12X - T, XRPIX i3E VB
EREGR 1 ps) & CCD (2l S p V¥ — 0 fRGe 2 kT 53], £D— T, BRICEECRHEOEL -
BRSNS ADC 72 E A2 B L R EIFOREAR—ZA L FBT 52 ERRETH T, T Ok
D=, FHxlx ADC X° DAC, BGRULHEE LA RKRIE) 2 H— SOL 7 LICER L. IV %1
XRPIX| O EZHED TS, BIEEO A TF v AUIFELEIEOHIRO 272 &F, 7ha G508 F >
TNTHEET D EICED /A4 RitEm Eb 72579, ZNEEANLRLO LT 5120, HMIEEREICH
b L CHART 2 HIEE SRR OB AR R CTh D, £ 2 CTARMETIE, T 7T B AR Hil4E
D —r v AR T 5 PG(Pattern Generator) Z B L7-, PG Off#ic L. LERMESHE
BERD 121 KD 3T ARICE THIH TE B, 7272 LA Ry FERENGEAH LigA R s OF S I - TH
HEC D B D87 n— %G, FHEIZHET > TPG % FPGA EICHELL, BEfF®D XRPIX %
HE 9 5 B R A Ikt L 7= (Fig. 1), fEF. —HOE BARMERRICE W TEREFER & B2 5 F8h 2% i
L7es, FPR7REMETFIRZ BT Z & T PG O EE A LT R AE TH D Z L AR LT, RIS
ZOFNEEZEH LTy THIENC L > TXBRALT MVORRIZRE L. PG & FW = A X2 hERE)HE
HHUNEFICEET D Z L2 EIELZ, Znck ., PG 2##i9 2 ki o XRPIX13 5 v 7128
WTHIRED FATHIEARETH
5 HEEL a5,
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Abstract We review the theoretical foundations of the conformal bootstrap method, which has undergone
remarkable development in recent years, and describe its applications to various physical systems.
© 2025 Department of Physics, Kyoto University

EOBEFHICBWT, BBABRBIIA 7 — VAR L » TREAT B, LESBEE  (Conformal
Field Theory, CFT) IZX - CRik&n b, 4, 777 U7 >0 BRI GE T, I
P, 2= U, BLORENHMEE V) RO REFFORN LY EZRET S T —hA T
v WEHREE LWEREZZT WAL,

AL, FTEBT - A NI v T ORME L 72 D ER TG ER O AR 2EE 2 L B

— L. bR FITH D 3IRITERA ¥ v THRIOBER I E EO X HICRET D00 EHRAT 5,
F 7o, IEBEMER D N eel-VBS FHfiAfE 72 K CEHBEIZ /2 D RHMED 7 = 7 & AP HIRIFREORE2] 12 E D
AT AN T v TRICHENTE-ONEHAT S,
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Fig. 1. Bootstrap constraints from duality-inspired fusion rules.
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Abstract Quantum gravity is expected to arise from a path integral over geometries. We review
Jackiw—Teitelboim gravity as a two-dimensional framework realizing this idea, and discuss a
non-perturbative inner product built from geodesic length states, including matter. We then explain how
DSSYK is captured by quantum-group dynamics and motivates sine-dilaton gravity as its dual.
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— AR R IIREOFEHE LB VEE TR TE 28 L L TUALBRO LN TS, FHIZEROK
SVWIRITEIREAR I L CT T v 7 R— IR Z ENHOLNTWDER, Z0 X 9 72 MIRA 72k
ik DI+ T, BEHOETHRBONRLEIC 2D B2 N5, BT 1FORKES N O
Hed 2 L EIORBIES 1THDOARFZEOR LHITICL > TERTIHITTHD. AMELHTORTH
T, Rt%x 2 Wl E L CHHEZ TFS22LT, ZTOBERTORKEYEZEHL
Jackiw-Teitelboim (JT) FEJI[1, 2]iZ D\ CHFRLT 5.

HERERIT d IRoT D JEAEZSHAA M6t i U C d H O REMEAFAEL, d(d-3) /2 HREA RS Z &
2725, d=2 OFF, 28 -1 HHERIZZR>TLEIOTITENTIEY v F AL T =LA LT 4T
NoGEBINT 22T, BEO0BHHEOMMMRHERBIZLTND., IDHIZT 47 b IRZE% AdS B
BIZEET HEE S RIZT. TOBNTT, 2 WY —~ BT 2 %M NREZEICk L CEATE
T, HOWDDHFED R LHIT AR /2> 7= [3].

EZATNHN— I ER—F U TOFHEMUMNIIREEIND LI, EFENNHET L OELH D ZEM )
SHIOH B ZEM~DEBEETHY, /Kb OLEMERD D Z L PR/KREEZRD D Z LITkHET 5.
2WTENDGE T —RITZEROE SN ZUCHY TS, ZORSORESTREZZIZLT JT B
2B DIRRED, WEOHDILGAEITHERTE D, AMETFHILTIEIN S OREDOIE D ZEMIZFEZED &
LHIT & DB R2NEEZ ERXT 2 HIECO N TER L TN D.

FHEOHHMELE S0 AL 0 TERWNLSLTHD. T4 7 hilkoTli=RT -2 ICEES
NTWAHR, JTEHATEZ DRI 0 AS 2212\ Th A ERICH EN -2 Th D, # LT
ZTOBEROELELHITOMNRTHD. Lz THRIL, ZOBELZ2HHED R ETERT DY
2 UNYHEBLELTEEIHBELZDIZLLTES., ZOVaTUNALYHEBET VX2 E2RFo-
Sachdev-Ye—Kitaev (SYK) T VOF TR XL X —FHHERE L THEAAZZ E0RHONTEY [5], 2
WREEHE 1N RTETROMOFe 7S5 7 0 L LTRSS Cx T

& AN SYK BT VLR =RV F — TIITIICAE S 2 &N TE T, 2P X BHEGROXHSY b i
BHENTWRV, £ 2 TEE, SYK T V22 TOT RV —F8 CRTAICIRE T 5 X ) ICEF L=
Double-Scaled (DS) SYK ET /v &, *HeT 2ENERTHLYA T 7 b EIOMOBEFENER &
NTWAB[6]. AFEFETIL DSSYK EF /LD ITENETRHICE > TR TE D 2 & 2N, TNEER
TEETDHEORRITENELTHA T 47 NUCBEINRBEND Z LT 5. RN TFEE, 3
B BEICERR-L 910, ESDORFET-REBEAEST-V A 0 F 45 B HOHEY) e & TkAS, DSSYK
ETNVOYEEEZFHTLZELHATS.
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Abstract

In high energy regions, Quantum Chromodynamic(QCD) systems behaves perturbatively. This paper will
introduce the dynamics seen in dense QCD phases and derive the scale of cooper pairing gaps of quarks
in this region using the renormalization method. The result holds heavy implications for the symmetry
structure realized in extreme densities. © 2026 Department of Physics, Kyoto University

J A —7 LT N—F ORI < W) EFIRT 5 SUR) ' —VEEG Th 5 E 815 (QCD) 1XFFEE
22T 2358 < | EEER 7T SR EE 2R BRES & T o TN D, AR FE S IR AR T QCD 13K - BT
TANBEREY I 2 b—2a UBNETH Y . EEMRENT M EAL TS — T, sign problem D& %
B E RIS I VT DT IR Z > TWVWHEETH D, —FH T, @ik, BEEOEHZRLF—R
F=ZBWTIEA v ) T EROMEDR /NS BRI A RIEE TH A Z ERMBNTED |
EZR RN AREE o TN D, MEBEER Tl +— 27 N7 — /=%t &k L T 7 — B migFE~
CHHEERS T2 Z EMTPRINTEY, SOICZHUTHFETETICALND L) REETLERLED
ZEWTRBRENTWA], FHETFERNTEBR LY DTV AL LTI I =T XTI 4 —7
D 2 7 L—N—=XFRED L D SEO R TEN D I T —BIREA (2SC FH) DD, E O B eI
DNWTIERTEERORMN > TWDH[2], 2Tl MEBEFIRKICE T 5 7 =L JEEFHICFEET 5
7 F— 27 OEEIZOWTHIT L, 77—/ S—%HEROITIZ W TR 72 FIETH 280 AR EX4E H
W 28T 5, ZOFENS, 7 /LI EITED T +— 7 OFE#E)I V7 /V—A4 D magnetic mode
W BEND FHEBEMMH A EANEEREEZ BT 2 ERbND, 61T, KX TIXZD X 9 7%eH
AERDEWELEfAER &L SO/ — N —XTEREZFE I T L Z L 2rd, ZOFRET 2SCIZHIT D %f
PRIEDOREE L BHCE b - TR Y, SO EEEFIKIZI T 5 QCD FHOMTIZ & > TIEFICEE R E
LR & i,
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Abstract A scintillator-based neutron detector has been developed for lunar water
exploration. The detector demonstrates high sensitivity to hydrogen within lunar simulant,
even at extremely low water content. Additionally, a spectral reconstruction algorithm for
multi-layered detectors was developed to estimate the vertical distribution of subsurface
hydrogen.
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VRO A A A EiEEC A Il ORI BV T, KEROMARIIREGREDO —>TH B [1],
THETHEEREIC L 0 B2 2B T TE R [2], #iE SN -EKRIBATFERTEL &)
Ho, BFRFHOBMEE &b 0.5 wth(FEE) OEKROFERNFEEIFET 20IEEN TR, £
7oy KEWROEESAAICE T2 REME S THEAREE LRI WD, ABFZEO HIE, $RITFHR
NHEICEZ L TAELLFMEFZ2KERO FL—%—L L THEH L (Fig. la), Hle— N—8 R
HH T X /N CIREITNIEIC BN, BB v F L —2 FRO T2 B L. Z OHEF B
EIEAETHZETH D, IHIT, HTFOKFDMOHE BT SO TFEEZERE L, GKRAIE
OREEE | &SRB A OHEE 2 BEE 3,

AR TIE, BbiE, mlprE T, o ~BIOEEZ Lo Li S8 0A#K T L—4 (B]-270) %
FAWT, BEBEMICRGEE T o 72, 7. T Lb—F BUROFHII O 7= 8 P2CF 1R & IR L, i1
& = BROFRRINERE D A b & BVRYEF O L — N OfTFIE AR LT, S 61T, FEHlT—4 &
Geantd ¥ = b —I g &L, WENL 7T WINT—ETHZ L 2B LT, WIZ, TARBSGTO
He H A FPEF KA EH OB EH ORI A V. 5~90 wthE TOEKETORIEIERZITV . B
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JSE B RT 2 L HERR LTz, BtR1T, 0.5 wikfF T oMK S KR D H ORI A2 AW ERZITD, V2
2l —3 3¢ 8%LINTO—HZ 779 (0. 1 wth TORERFAZFRL) & & b, MRS KRIZE T HME
PRKFBICH L TH e E 28> 2 & 2R L7z (Fig. 1b), B4y etEReo Bt T, EJ-
270 % 8 {HFfEE S mtan 2> ¢, Al CHEESIND T AT MV TE - BYL « ml k1o
BELLEZZEOY U F L —2 D L — M BHEE T DT FIEZ R L Fig. o),
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Fig. 1. (a) Processes for neutron or gamma-ray production on the lunar surface, by interaction between cosmic
rays and lunar regolith. (b) Measured and simulated thermal neutron detection results for the lunar
simulant experiment. (¢) Reconstruction of the incident neutron spectrum in Geant4 simulations.
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Abstract It is important to solve the emission mechanism of GRB prompt emission of the
energy flux has a peak at 1 — 50 MeV. For future observation, we upgraded a trigger system
for ETCC and developed point-cloud tracking to identify pair-production events.
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H o< ANA—A MIFHERROBERIAS L L THOLNTEY, (VX —T T v 7 ADE—7 % MeV
HHRIZRF D, 1 - 50 MeV 1 O#RA >~ # CHIM S & @R 0 R RE Tt - B2 2 L ik, =
DFETHERE « TX X —BRBR AT 59 2 THEHETHS LW ESNTWAILL, 2], —F T, #Ek
OISR CTIE Z O T3 708 2 FF D ISAREF OHRG5E - EBIIEER SN TR 63, £2K
B2 2SR B OB TIXE FREEEE T COREREM L A T, BRI =7 F 2
W8S (ETCC) 1. H A%\ 7= Time Projection Chamber (TPC) & /o F L —Z MBS, A
VRRMIE D 3T N UL ES A SR RIS AL AT HE T d D, ETCC A #5#E L 7o ZEKRSEHR SMILE-2+Cld,
0.2 - 2.1 MeV O LF—HIK TOH o~ BN AP LT 5 [3], ARAFZETIX, IR ERFEER
SMILE-3 Z/&BHIC, L — MiftEZ mbd 57 — X WNEROHEIE . 1 MeV UL EToORE M A HRE L
7o, SHERFEROTRBIMEH 2 7255 - FRERTEOBRREIT- 712,

BATOT —ZWE AT AT R A —FRITERT 28 L — FEOT v RZ A 28N (KEK7 7
A PR TRI5%) WO RIER S D1E0, BHEZERO KABULICLE > ERMEE FToB&En b -7, T TR
RS2 M Z 8 b U =R (FSRMETE %) ~OxHaeE s v v 7 Bl X 282 RE$, AHD
DIEME A OB 2o N H—ay hn—la=y FEShPikEk 2% L Fig. 1) . 7o k4
A TERUWELT-, T —ZIEREZHAWTIPC, Yo FL—FZEM L, AT 7,

KA BB IRMT IO TC, SMILE-3 Tlm = /L X —F BT (4112 X - TEURFR % 5 MeV £ THLIRE
TELLHAENTWSD, ZOFEETIZa 7 M UBELCNZ TET « BB 7RSS R T 7
WEIETIRA LN 7 7T 00 RERDN, 1EROEG LT T A —2 2 S FETIEE =RV
X—Dar 7 M HELEG L ORFINEET ST, BEERTO—RE > Tz, & 2 TR TIE,
I RHEFZERT D UVSOR BLIU B — AT A CH U~ a BT 2 EBR 21TV, mBET co 2 F T v
7 HEE ORI X DA ERF RO - EAER AR L, Bk FmOFEKICEIY, BE—AaT A
YOH RO AR F L E FERTE DS Z L aMR LT (Fig. 2),

Fig. 1. Designed Trigger control unit. Fig. 2. Reconstructed Image of 6.6 MeV
pair creation gamma-ray.
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Abstract The GroundBIRD telescope, located on Tenerife Island in Spain, aims to observe the CMB
polarization on large angular scales. We completed pointing calibration for full-array systems. We also
developed an analysis method for temporal variations in the atmosphere.
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FH~A 7 i shkdt (OMB) IZ AN TE 20N THY | FFIHEA 1° LEORAER
r—ZBIT D OB RO REZ— T, A o7 L— g U A T A FUAE R OBER[1]X0,
FHOFEBE 2RI IEFNESL « ORE2] 72 L, FHmOMEICRE 2T 25252 ERH/FE
NnTWn5,

2R AT R 7 = BICERE S GroundBIRD SEiESEIR. KA X 7 — LITHEHME L - BLREERE ©
HD, HHORK20EEEE V) FmEHEAX v ALY REMHOELEOFEL Y L RETFERT D
ZLT, ZORBEMEITABIA T T U—EFEH LTV,

CMB OREFEBINC 1L, LiESIOGRNFHO EZ MW TNW DN EREEICKRET S IRA T 17|
DULERAIRTH D, FATHRBIIC L - T, EamP OMHI ORISR o7 2 IEFETFERE S
720, 2 ToOmMHE T (full-array) ([Zx3 DEIEFIEIIMENL L T\ e o7z, AL TIE. 2O Tk
Z full-array ([ZHEiE U, GRG0 OBIEDRGE &L BE/ T XA — 2 245372,

RA T 4 THIEZEZEMR LT & T, OB ZHIET DMK ) A4 X TH L KRR EET MMET D
WRGEAIRBIC 72 o 72, ARG TlE, RIS OREE RS 2 FIEZBR Lc, £ ORE, Fig 21TnR
9K 912 GroundBIRD BimEENZ O EE RHRIC K BRI A v VBLUHIN S . KREOFRIIC X &R 72
WAL X CWA T R LT,
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BB 2 KRET V& AW ) A4 ZIMHNC X 2B EOm EAMFTE 22 L biotz,

. S . _ Fig. 2. Two-dimensional histogram comparing the estimated

Fig. 1. Variations in atmospheric radiation : o . . T
wind direction with the wind direction observed at the Stella
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Abstract This research focuses on the development of an acrylic Cherenkov detector for use in high-
precision spectroscopic experiments on hypernuclei. The role of this detector is to achieve efficient data
acquisition by removing background protons and by identifying kaons from hypernuclear production
reactions.
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HALTHF2BRETDHIENTES. JPARC IZBWT EBRAE CHET DR HIZHIGT 5N Re v
E— A% AW THE O R 28 ORIERIC T 2 HERERMI 21T - 72, 24Uk K izxr LT 99%
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Fig. 1. Evaluation of detection efficiency when changing the beam irradiation position. Pattern C achieves 99%.
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Abstract We studied a TPC gas for an electron-tracking Compton camera using CFs-based mixtures. By
measuring gas gain using alpha-particle at low voltages applied to the u-PIC and GEM, we evaluated the
gas gain dependence of CF. mixing-ratio. We also conducted XPS analysis to investigate electrode

surface discoloration under CF4 operation.
© 2026 Department of Physics, Kyoto University

SRR BEI BN S 5 B 5 E - HEBR & £ U S A 5B ORI OV T, RIK SIFER
WVE E TERRRETEPIEB SN TNDED, WEEFREIZITE > T[], ZOERO—21%, B
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s DRI ELARBHETEI o7 F U EiESE (electron—tracking Compton camera: ETCC) I,
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T~ BB ESR SMILE (Sub—-MeV/MeV gamma—ray Imaging Loaded—on balloon Experiments) % Fjii L
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Abstract We calculated fusion cross sections for the 2C+% 13C systems at astrophysical energies. Using
a microscopic reaction model that explicitly includes compound states configurations, we computed
fusion cross sections for these two systems within the same framework. With this framework, we
successfully reproduced the distinct differences observed in the experiments for the two systems.
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Abstract The holographic principle relates quantum gravity to boundary QFTs. AdS wormholes dual to
deformed CFTs reveal traversability when non-Hermiticity of density matrices occur. PT-symmetric
holographic models exhibit phase transitions, NEC violation, and novel intermediate phases, offering
insights into non-Hermitian extensions of holography.

© 2026 Department of Physics, Kyoto University

HHOEFREMATHHERGRHE L TRl T 7 GRS 5, ZiuL dtl IRICOESFHRD
FOERIZHGD A RITCOGODEFHEMNETDHENI O THD, ZOMREFIL, d+tl RTTOADTH
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ffi &0, U_Ajv—{w:ﬂﬁﬁ%@@ Fig 1: Two types of wormholes and dual CFT behavior [1]
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Abstract This thesis presents the development and performance evaluation of the neutron and gamma-ray
detector MoMoTarO-ISS for solar neutron observations. Ground tests and Geant4 simulations
demonstrate its environmental robustness and capability to detect solar neutrons in the ISS orbit,
contributing to studies of particle acceleration in solar flares.
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Fig. 1. (a) The particle-flying process in solar flares. (b) MoMoTarO-ISS (EM). (c) Light curve estimated by
Geant4. The red dashed line represents the theoretical peak time. This shows the results
after data screening, and the X28 flare on 2003/11/4 [3] is used in the simulation.

References

[1] /5% RADIOISOTOPES, 68, 12, 907-915 (2019).

[2]1 N. Tsuji et al., Proc. SPIE, 13093, 1309379 (2024).

[3] K. Watanabe ef al., Advances in Space Research, 38, 3, 425-430 (2006).




IKR—RBELFL—R2EZRANERFMRESED
FR¥E & 1 aeaT A

S Ve /B2 ] e SO 7 S ]

Abstract We are developing a new tracking detector using Water-based Liquid Scintillator (WbLS) for
precise measurements of the leptonic CP-violating phase in the Hyper-Kamiokande experiment. In this
thesis, I report the light yield improvements of the WbLS detector, simulations, and performance
evaluation with detector prototypes using an electron beam.
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TR LTS 3 ks IRICIE S &2 L TR, &
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TEXCAHMICFEE 2R Z LA Th 5,  Fig. 1. The design of the WbLS detector
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detector used in a beam test
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This study experimentally evaluates heat generation in Er:YAP crystals for high-power 3 pm lasers.
Thermal imaging is used to quantify absorbed heat and estimate thermal lens focal length. The
agreement between experimental results and theoretical models provides design guidelines for
stable resonator operation under strong continuous-wave pumping at room temperature.
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Fig 1. Thermal lens focal length in an Er:YAP
crystal as a function of heat power for different
absorption coefficients. The shaded region
indicates the experimentally relevant heat load an extended stable region even under strong thermal lensing.
range, where the focal length varies from 29.3

to 114.8 mm.
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Abstract We explore new aspects of the holographic principle in de Sitter spacetime, which is expected
to describe our universe. After reviewing several types of the holographic principle from quantum
information perspectives, we present our works on perturbed de Sitter branes and the duality of Einstein
equation in the dS/CFT correspondence.
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RFZE D B8 /1B & £ OBEFUFET ISP (Conformal Field Theory, CFT) O%&flitE% £5E9 5 =
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RO BT A Ry hu =R EDERICET D e N iE O CHATES L0 )
e EmIIARPIRE SN2 LI2E o T, Aur 57 4 FHEICET 5 & - RERMN RO REE SN
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Abstract We are developing the MARQ spectrometer for hadron spectroscopies at the J-PARC n20
beamline. The threshold type Aerogel Cherenkov detector (thAC) will be used to identify kaons from
pions. We report the performance of the prototype thAC and optimization of its design.
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TIEANARBRUND T +— 7 st EIREEZ ST 2 8B HEIZR > TNDH EEZI BN TWVDHINRZED
FEZ BT D ERFERITE SN T,

J-PARC E50 F2ERI%, J-PARC /~ R o FEBRfiust CEIEER T OH - —LT7 14 0 THDH 20 BE— A
FA TR ANLY ha A —2 T b MARQ A7 hu A —&Z W=, Pk IMARQ FB) &I
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Fig. 1. Design of the threshold type Aerogel Cherenkov detector (thAC).
References
[1] M. Anselmino et al., Rev. Mod. Phys. 65, 1199 (1993).
[2] H. Noumi et al., J-PARC E50 proposal (2012).



BAAgELE D —L—)LEARATS D4R
LRSS SEAT BR TS — 7 Bk

Abstract We consider a traversable wormhole in AdS spacetimes and explore the properties of the dual
field theory using AdS/CFT correspondence. We compare two different wormhole models and see the
common behavior on the correlation functions, although they have completely different origin for their
traversabilities.
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Abstract We have been developing SAT-LF, a new CMB telescope for low-frequency observations at the
Simons Observatory. In this study, we focused on developing the cryostat used to cool the SAT-LF
detectors. We ensured its structural stability and evaluated its cooling performance, estimating that the
cryostat can reach the target temperatures. © 2026 Department of Physics, Kyoto University
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Abstract

Equation-of-state-insensitive universal relations (URs) among physical quantities of neutron stars and
quark stars are essential for reducing systematic errors in gravitational wave observations. We derive URs
between higher-order multipoles and tidal deformability that hold to O(1) % accuracy. We also investigate
the nature of these URs by performing analytic Newtonian calculations.

© 2026 Department of Physics, Kyoto University

KW OIGIRE B FICBIT A5 P LB o 2 FESRRE F R OFIRIL, JF Ly, KUz
Lo THERBETHD. T, EEPHETRE K7 +—728) 2D OENFEBINC X2 2038
NTERSNDEG (IWERE L) OHEENE 172 TETH . EERIZ 2017 HICEH S vz E 2
P BARHE SR D E W GW170817 OIEFHR D & VI EM DI R LI ERNED b, i X 508
AT EA I N(1], BEAEENCEON L, BEOEESCMEMRE—A L N M, R EOHEET 537
A—ANENE, ZHODOHEEDKEENMET T 5. ZORBEIL, L & My ORICH Y SZ> Nikfe TR
WL B0 M - L EERRR]) ZHWVWTRTI A2 AR LT Z L ThEINT.

AWFZED BHIL, MRS EMR J\EMm - +SEmR) BoMOSEREEZHBE L, SBRBE T EDF 3
RO TOBBPOREER LICZNBERTZ 20D ETHD. ZDHIz, EI-BEW
NEMRE—A NS5, NEW -« HREMOWE LR 1, uE BEPEVITEOS & FHE L.

RFEMFER L LT, BEH-BKMN/\ERET 102 e

— A b Sy & FAEROMBELEL LOBIE APR —e—  SQMI —+— _
1, 23 %ORGEOWEBIR AR Y o2 LM% T e o S ]
hoto (Fig. 1), £72, My & CIROWWERSE 1w & [ Shen —e— fiit == - M"‘
OWEEMRCBI LT, ©=2,3 BRAREIC 12% & 100F 122 e ;
TRV ILON, =4 TE3A%LHENFA> & _ :
fo. =77 8§ & CROWBERFROE AT, T
C=2DKHI9-10% LR HIELS, 0=3T56%, "
C=4T23%E, UCORKMNEND T LITHEE 1
N BN 2 (02

M AT, AWFSECTliE Newton FRERIZIS VN T —k %g” S
DUH L, COSEME M, S, HOBERER & ©
FrEicGHR L, i BR ORRED K/ & L E i 104

DOWED KN O BER & FTH~T-. 10° 10t 10? 10° 10* 10°
M- JeRICIE, L OWRBAMEVEEZIZ (= 0D As = As/M° (non-dim)

Rl ORBE TR FEDR 59 E 2 (DF Y, iR
MWREED) ZEBGhole. —Ji, LOWHEMN
E3 % & ZOBRITHATL, €2 10 TET T
M (2K LR O U ORI ETERIZ ERREDR /NS
7ol £z, Se- M, ORI
G = CORHIIREEST AL ENTTE D
EWVH BRI AESNT, 625 THERD 0O
VERIFZEBRED NS RD LN mholz.
References

[1] LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., Phys. Rev. X, 9. 011001 (2019).
[2] K. Yagi and N. Yunes, Phys.Rev.D 88, 2, 023009 (2013)

Fig. 1. (Top) The value of gravito-magnetic octupole
moment S3 for a given tidal hexadecapole deformability As.
(Bottom) Fractional errors from the fit. Different colors
correspond to different equation of state (EoS). Observe
that each relation is almost EoS-insensitive (Universal
Relations), within 2-3 % for all EoS, including polytrope
EoS.
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Abstract We conduct J-PARC E16 experiment to investigate QCD condensation through hadron mass
measurement. In this experiment, the Hadron Blind Detector (HBD) plays a critical role by identifying
electron pairs while suppressing pion backgrounds. We evaluated the impact of structural modifications to
HBD on its performance to ensure stable operation.
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Abstract We investigate how stellar characteristic masses depend on metallicity by modeling both
pre-stellar cloud collapse and post-formation accretion heating. We find that protostellar radiative dust
heating becomes effective only above 107 solar metallicity, increasing stellar masses by up to an order of
magnitude.
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