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Abstract In financial markets, price impact, defined as order-induced price change, empirically follows
the square-root law. While appropriate nondimensionalization is crucial for its statistical analysis, guiding
principles to select such characteristic constants are lacking. This study establishes its theoretical
foundation and analyzes the statistics of the coefficient of the square-root law.
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ZIQ)E LTRE, DX D B R_R&EFROIERIFINE T 2 0o TWAHI(L, 2],

1(Q) =cQ%6 ~05. (1)
FrlZ, %< OFFE TR EFEESNOSITEVEZ D Z 005, ZORBRITFEFRAIEFEIEN TV D,
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L. HORBUIMMEISE NS S 2T HG 2 X M EEERRT 5720, BERERETH D,
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Abstract We studied terahertz magnetic-field-driven spin dynamics in an antiferromagnetic NdFeOs
single crystal using micro-scale metallic resonators for magnetic-field enhancement. Strong terahertz
magnetic pulses resonantly excited the g-AFM mode near 0.49 THz, and higher-order harmonics were
observed, indicating nonlinear spin responses around the spin reorientation transition.
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Fig. 2. Fourier spectrum of the temporal waveform.
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Abstract We investigated the field-angle dependence of the ferromagnetic critical point in CeAgSb,
using resistivity, AC magnetic susceptibility, and magnetization measurements. We found that although
fields along the ab plane suppress the Curie temperature, tilting the field toward the ¢ axis relieves this

suppression and broadens the transition into a crossover.
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Abstract We study topological phases in a (1+1)-dimension lattice under a modulated symmetry, whose
action is position dependent. Particularly we classify SPT phases of multipole symmetries, which
preserves multipole moment of the system. We give explicit models which shows SPT phases under
multipole symmetry.
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Abstract Odd-parity antiferromagnets host cross-correlation responses arising from broken inversion and
time-reversal symmetries. We attempted to detect current-induced strain in BaMn»As; using >*Mn zero-
field NMR. By performing direct-current and pulsed-current measurements, we evaluated and suppressed
Joule heating effect and discussed whether such strain caused detectable changes in the NMR spectrum.
© 2026 Department of Physics, Kyoto University
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Fig.2. >Mn-ZFNMR spectrum at 4.2 K.
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Abstract We study non-Hermitian localization phenomena unique to open quantum systems in two-
dimensional electron systems. We show that the interplay of spin—orbit coupling, magnetic fields, and
energy dissipation gives rise to Z and Z. Liouvillian skin effects and demonstrate that Fermi-surfaces and
finite-temperature effects play essential roles in their emergence.
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BEAEFRIZBWT, BIZ A T I 7 ZTROMWEEZRET 2 DI BN 5 7 EEBERER 2 R
T L7do T, BEHRETRIZIHVT Liouvillian K ENFOIHELATRENE LK NE ORBLZ 5 Z L1
BEROFRE L 72> TS, L LB, WK Liouvillian RN EOWFTEIL, EICHHAF TR ED
ANTETREZNRE L TITOILTEY (6], EARET-RICEBIT S Liouvillian 2R EZEhE DR ELATREMEITA
BtECTH -7z,
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Fig. 1 Schematic illustration of the system. Fig. 2 Localization of right Liouvillian eigenstates.
(Left) Z Liouvillian skin effect. (Right) Z. Liouvillian skin effect.
References

1] Z. Gong et al., Phys. Rev. X 8, 031079 (2018).

2] K. Kawabata et al., Phys. Rev. X 9, 041015 (2019).

3] S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).

4] N. Okuma et al., Phys. Rev. Lett. 124, 086801 (2020).

5] T. Haga et al., Phys. Rev. Lett. 127, 070402 (2021).

6] Y. Shigedomi and T. Yoshida, Phys. Rev. B 113, 035121 (2026).

—



EREEBEEERIZETS
EFRANERSZEEDEGHE

et R M am 7 V—>7 AR

Abstract We establish a theory connecting the temperature dependence of quantum geometric superfluid
stiffness to superconducting gap symmetry. Revealing unique scaling laws dependent on band crossings,
we apply this framework to twisted graphene experiments to constrain their nodal structures. This work
provides a crucial diagnostic tool for flat-band superconductors.
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Abstract Superfluid 3He A and B phases in a Imm cylindrical container were studied by numerical
simulations of textures. 2D textures and 3D domain wall and corresponding NMR spectra were obtained.
The experimentally achieved texture was examined by comparing it with the simulated textures.
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Abstract UTe: is a promising candidate of a spin-triplet superconductor. We have performed '>°Te nuclear
magnetic resonance measurements and revealed a large reduction in Knight shift along the « axis.
Furthermore, such a large reduction was suppressed by applying H || a, suggesting a field-induced
rotation of superconducting spins along the a axis.
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Abstract We clarified the dynamics of magnetic-field-induced birefringence in liquid crystal
nanoemulsions. The relaxation time depends on the radius of emulsion and magnetic field, but solely on
the field in the strong-field regime. The phenomenon can be understood as a balance between thermal
rotational diffusion of the emulsions and magnetic-field-induced orientation.
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Abstract Efficiently-verifiable one-way puzzles (EV-OWPuzz) are assumed to be the most important
primitives in the realm of quantum cryptography. If many QCCC primitives exist, then EV-OWPuzzs also
exist. To strengthen that EV-OWPuzzs are important in QCCC settings, we construct EV-OWPuzzs from
QCCC public-key encryptions.
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Abstract High-signal-to-noise-ratio (SNR) terahertz spectroscopy system is critical for molecular clocks.
By tailoring the intensity modulation scheme within a superheterodyne detection system, we demonstrate
the acquisition of high-SNR derivative spectra of acetonitrile rotational transitions. We also discuss
terahertz frequency stabilization utilizing this technique.
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Fig. 1 150008 £0312.6877450(4) GHz[2] Fig. 1 Derivative spectra obtained by non-superheterodyne (left)

B S AT h= kUL (CH:CN) ® and superheterodyne (right) detection scheme. The offsets in the

(J,K) = (17,0) « (16,0)FI#EER =5t L Tl data were removed.
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Abstract We demonstrated optically driven rotation of optically trapped nanoparticles immersed
in superfluid helium using circularly polarized light. This approach allows us to study particle-
superfluid interactions using light, enabling investigations of the superfluid dynamics in a highly
localized region.
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Abstract We have analyzed the cyclotron resonance spectra of holes in diamond to extract the intrinsic mobility at
cryogenic temperatures. By considering the skin effect enhanced by high mobility, we successfully obtained the
ever-highest hole mobility of (1.1£0.2)x107 cm2V-1s1in diamond, which demonstrates bipolar carrier transport.
© 2026 Department of Physics, Kyoto University
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Fig. 1. (a) Differential CR spectra of holes (color map and full lines) and their fitting functions (dashed
lines shown with vertical offsets) in intrinsic diamond at 2.4 K, measured at different microwave powers.
(b) Theoretical spectra of absorption (dashed line), dispersion (dashed-dotted line), and their sum (full line). (c¢) Carrier
mobilities extracted from the distorted CR spectra.
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Abstract We analyze the impact of many-body interactions on exceptional points in terms of symmetry
and topology. In particular, we reveal that symmetry-preserving interactions can induce two-fold
exceptional lines and three-fold exceptional points in a two-dimensional parameter space of a non-
Hermitian quantum dot with charge-U(1), spin-parity, and parity-time symmetry.
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Fig. 1. Emergence of interaction-enabled EL2
and EP3 in a two-dimensional parameter space
described by x and y.

The red (blue) region on the base indicates the
parameter region with a Z, index of +1 (-1),
while the black line represents the interaction-
enabled EL2. The color plot on the top shows
the x-dependence of the complex eigenvalues
at specific values of y.

References

[1] L. Fidkowski and A. Kitaev, Phys. Rev. B 83, 075103 (2011).

[2] M. E. Lapa, J. C. Y. Teo, and T. L. Hughes, Phys. Rev. B 93, 115131 (2016).
[3] C.-M. Jian and C. Xu, Phys. Rev. X 8, 041030 (2018).

[4] Z. Gong et al., Phys. Rev. X 8, 031079 (2018).

[5]T. Yoshida and Y. Hatsugai, Phys. Rev. B 107, 075118 (2023).



EEBH KO RILAHAEZR LN
X774y MMEEY (PbSe) 14(NbSe,) , DHFZE

B T-EERMER e AL

Abstract We studied the misfit van der Waals superlattice (PbSe):.14(NbSe»), using scanning tunneling
microscopy. Cleavage exposes a monolayer NbSe; surface showing a 3x3 CDW and spectra similar to
isolated monolayer NbSe», indicating minimal charge transfer from the PbSe layer and preserved
two-dimensional electronic states of NbSe,.
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Abstract We study the effects of quantum geometry on odd-parity multipole magnetism. We find that the
ferroic multipole fluctuation is induced by quantum geometry. Due to the Hubbard interaction, the
quantum-geometric multipole fluctuations condense into the multipole order. We predict complex
magnetic correlations, which are a signature of quantum-geometric multipole magnetism.
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Abstract Feedback cooling is practically important and well-studied in information thermodynamics. To
handle analytically intractable nonlinearities, we implement the “demon” as deep reinforcement learning
that sequentially acquires information and applies feedback control to reduce kinetic temperature in a
Langevin system.
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Controlling fluctuating systems is an important challenge for understanding, manipulating, and designing physical
and biological systems at the nano- and microscales. While thermal fluctuations can be neglected at macroscopic
scales through averaging, they crucially influence system behavior at the nano- and microscales, where the dynamics
must be described as stochastic processes.

Feedback cooling, one of the optimal control problems for fluctuating systems, applies external forces according
to the observed system state in order to suppress entropy production and effectively drive the system toward low-
energy states. This process was formulated by Kim and Qian within the framework of Maxwell’s demon, where
they showed that the second law can be extended by introducing the entropy pumping rate [1]. Subsequently,
Sandberg and Horowitz demonstrated that, when linearity is imposed on the dynamics of the feedback controller,
the Kalman filter becomes an information-thermodynamically optimal controller [2]. However, this result is limited
in that it constrains the controller dynamics and assumes that the target system is also linear. In this study, we aim
to relax these restrictions by investigating the problem from both analytical and numerical perspectives.

One of our results is that, regardless of the specific feedback structure, the information flow exchanged between
the system and the controller can be decomposed into the entropy pumping rate and an additional contribution. We
formulated the latter as the excess information flow [3]. Moreover, we show that the excess information flow is
indispensable for maintaining finite measurement accuracy, leading to a trade-off between measurement accuracy
and the cost associated with information processing (or control).

On the other hand, when the system exhibits nonlinear dynamics, obtaining an analytic optimal solution is
generally difficult. In recent years, applying machine learning to physical problems has attracted significant
attention, and it is expected to provide a way to tackle such analytically intractable nonlinear problems. As another
result of this study, we constructed a controller that achieves feedback cooling via deep reinforcement learning in a
more realistic setting where particles interact nonlinearly.
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Fig. 1. Schematic description of feedback cooling with DRL
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Abstract We report two achievements toward neutral-atom quantum computing. First, we demonstrate
coherent control of spin-cat qubits encoded in the nuclear spin states of !7*Yb atoms in an optical tweezer
array. Second, we perform spectroscopy of '73Yb atomic beams, resolving high-lying Rydberg lines.
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Fig. 1. Spin-cat state generation. The solid line represents the  Fig. 2. Rydberg spectrum observed for '7*Yb atoms.
simulation based on the master equation.
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Abstract We conducted *’La-NMR measurements on La>IOs., a layered superconductor with a
honeycomb structure. We confirmed a structural phase transition at 60 K and an anomaly suggesting
CDW formation at 30 K. In the superconducting state below 12 K, the absence of a coherence peak and
the presence of a finite residual density of states in nuclear spin-lattice relaxation rate suggest the
realization of unconventional superconductivity.
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Abstract We study entropy production fluctuations near nonequilibrium phase transitions in chemical
reaction systems. We show that their critical divergence is directly linked to linear stability of
macroscopic dynamics, with distinct critical behavior for fixed-point bifurcations and Hopf bifurcations.
© 2026 Department of Physics, Kyoto University
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Abstract We studied the coupled Brownian dynamics of colloidal particles in nematic liquid crystals. We
observed an instantaneous viscous translation-rotation coupling attributed to the asymmetry of the
Hedgehog defect, followed by an elastic recoil driven by director field relaxation, highlighting the
interplay between hydrodynamic effects and elastic restoring forces.
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Fig.1: Schematic of coupled Brownian motion,
where a random displacement Ay perpendicular
to the director induces an asymmetric torque due
to structural asymmetry, driving rotational motion.
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Abstract We introduce higher category theory, conically smooth stratified space, and factorization
homology to describe the topological defects in Topological Order, potentially in any dimension. We
expose comprehensive review of higher category theory and Topological Quantum Field Theory.
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MR FARBa O HIVEEF (Topological Order; TO) &1, EAJIZRMGER T CHEIRAE L & —FhEdIREED
Iy v TE2RHFOBETZEHRRONINV =T o 2ERD 5 6, MxtEEIC MT%¥/7%%LEW%
BEWTCHEWVNIBYAEZDbDEE WML THEONAMHOZ L ThHD. FRa U IVEFIE, ZORNM
FFo MR m DA VEIC L - TR Hivd . FrC, FHRZEM] BICRLE S V7 R e 2 0 VERFE A3
FFORTO MRue Uk, BHEIZITER 72— a VEIICE VBRI N D EE2 6TV 5.
L2, JEAMZ AR e U— Ao MR e A VEFHEARRE L BOYBEDRA BN L, &
W7 a—a  EBor—42LOMORRIIIERHTHS.

KL TIX, BEMEOH A EEOERITH D conically smooth 7R EIRAVZER] OFEFRICED =,
NRB P ANFRFFFIZET D AR e YAV ONT 21T 9. ED7DIT, FITEHRZERICEE S
t3&ﬁhﬁuywwﬁﬁﬁ%o%ﬁuyﬁw%@%gﬁmﬁﬁﬁiwgﬁméﬂkdmkﬁﬁ%%w
TRk T5[1]. 20 LT, "ARa Y ARRERE D disk REOEL K TFbAREr o—I2 L0 TFH5S
T5Z&T, FEAWR MR Y — 2RO M RIRICELE SV FAR e Y VERFE O JL R EE @%ﬁf
ZRHRT 2 A FEMB OB OEIT 5 [2] [3]. 2D O FEFIAREMIAEER TC~IER ATHE
H5D.

EHIZ, MR YHAVBRFOBKT RV —FEGHTH D, MANSGOHER (TQFT) OafEmz L e

2 =179, KT, 241 IRTC TQFT IZBIT B MR UV Z R LVT XA LBEICBIT AHE & L CEl
T5, VRV IZ I 7 TQT DL Ea—%1T79. TOEHE LT, —B{bxt#tEs EH T 5 Symmetry TFT
EREIN D FiEE 141 IROTOIERTEIPE DG AL L, RIS T 28k 2 22006 DY TQFT (12
Lo TERAINDIHEEZ LD [4]. TOBEIZ, BRIEZEFOBERE L QR HbAEn o— & OERZ B4
L, @R7 2— a VEOBRZ S5 [5].
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Abstract To clarify how self-generated structures influence motility, cellulose-producing Komagataeibacter
hansenii moving on solid substrates were investigated. Velocity distributions along the first principal component do
not differ between motions on and off cellulose tracks, whereas instantaneous velocity distributions do, which
indicates selective mechanical constraints imposed by self-generated fibers.

© 2026 Department of Physics, Kyoto University

H AR EB) T 2 EA DS EF A 72 B O S a 7Z2 EB R N 2 R T BRI T 7 T 4 T~ X — IR A D
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Fig.1: Velocity analysis of Komagataeibacter hansenii.
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Neural network quantum states study for toric code under
Isotropic and antiferromagnetic Heisenberg interactions

Condensed matter theory group JANG WON

Abstract neural network quantum state and Schrieffer-Wolff transformation unveil the phase transition
and the emergence of antiferromagnetic x- and z-Néel order beyond the gapped spin liquid phase when
the square toric code perturbed by isotropic and antiferromagnetic Heisenberg interaction.

© 2026 Department of Physics, Kyoto University

We investigate the robustness of Z, topological order in the toric code against an isotropic
antiferromagnetic Heisenberg perturbation on the square lattice with periodic boundary conditions. The
toric code is a paradigmatic realization of intrinsic topological order—characterized by long-range
entanglement, anyonic excitations, and topologically protected ground-state degeneracy that cannot be
captured by local order parameters—and it also serves as a universal low-energy effective description of
Z, gauge phases that can emerge in correlated spin systems and engineered quantum platforms[1-3].
The isotropic antiferromagnetic Heisenberg exchange is particularly compelling because it is the most
generic SU(2)-symmetric local interaction in microscopic magnets and experimental realizations: it
simultaneously includes diagonal and spin-flip terms that do not commute with the toric-code stabilizers,
thereby introducing genuine quantum dynamics and a direct competition between topological order and
conventional Néel ordering. This makes it a stringent and physically motivated perturbation for
understanding how topological signatures persist beyond the exactly solvable limit and how they
ultimately break down.

To access intermediate system sizes beyond exact diagonalization, we employ neural-network
quantum states based on a convolutional architecture that respects lattice symmetries[4]. We determine
the ground state as a function of the Heisenberg coupling J and diagnose the breakdown of topological
order using fidelity susceptibility, Wilson-loop observables, and the topological entanglement entropy
extracted via the Kitaev-Preskill construction from the second Rényi entropy[5].

At small J, we observe a regime consistent with a topologically ordered phase, while increasing J
leads to a clear loss of the quantized entanglement signature and the emergence of antiferromagnetic x-
and z-Néel order. The ordered regime is diagnosed using quantities derived from the staggered
magnetization, including Binder cumulants and an easy-plane anisotropy ratio that compares in-plane (x,
z) and out-of-plane (y) fluctuations. Finite-size scaling of the transition indicators suggests a
thermodynamic critical coupling J. = 0.157~0.160, obtained by extrapolating the peak positions of the
fidelity susceptibility as a function of system size and from the crossing of contractible Wilson-loop
values for various L.

In parallel, we develop an analytic description in the topological regime using a Schrieffer-Wolff
transformation[6]. The resulting effective Hamiltonian explicitly shows how virtual Heisenberg processes
renormalize the star and plaquette terms and generate closed-string operators, providing controlled
insight into the fate of Wilson loops and the finite-size splitting of topological sectors. Together, the
numerical NQS calculations and the Schrieffer-Wolff analysis give a coherent description across regimes:
NQS data identify the topological-to-Néel transition with increasing J, and the effective theory accounts
for the small-J behavior of energies and (dressed) topological diagnostics within the topological phase.
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Abstract The Soret effect in liquid mixtures is investigated using non-equilibrium molecular dynamics
simulations. By comparing molecular models with controlled dihedral potentials, we demonstrate that
molecular torsional degrees of freedom significantly influence the Soret effect.
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Fig. 1. Schematic illustration of the Soret effect. Fig.2. Carbon-number dependence of the Soret

coefficient for flexible alkanes.
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Abstract Directional control of microtubule swarms was demonstrated by inducing local mechanical
asymmetry using photo stimulation. Microtubules modified with photo-responsive DNA exhibited
rigidity increase under UV irradiation. Local stimulation to a swarm created a stiffness gradient that
steered its trajectory, and the mechanism was confirmed by both simulations and experiments. © 2026
Department of Physics, Kyoto University
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S 7215, & Z TAMIETIE, mWVERFERSREEE RO ) Z4MMH% E U CERA L, EHNERIC
W7 R —MExE 525 2 & T, MUvNEEROET T M 2B RBTEICHE T2 2 ¢ 2 B E Lz,
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Abstract We performed scanning tunneling spectroscopy on Bi2Sr2CaCu20s+5 and analyzed spectra using
normalized differential conductance. Despite strong nanoscale gap inhomogeneity, we identify a spatially
uniform energy scale that varies with doping and corresponds to previously reported spectral kinks, which
suggests a distinct global electronic energy scale.
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SR L i RE AR, F—7 BI6 U CEHERE FIREZ R THHAME TR THY . ZOBEBTRED
AW R BRIIRIR E L CEERBECTH L], 2N E TCEERERTFIESHNONTELER, ZOHFTH,
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Abstract We performed scanning tunneling spectroscopy on ultra-clean UTe, single crystals, a strong
candidate for a spin-triplet topological superconductor, to probe their surface electronic states.
Measurements under magnetic fields show that the surface charge density wave is likely unrelated to
superconductivity, in contrast to previous studies.
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BEEE, 2 JOEFH T — /=%t EflA, ERICae—Lr MREERDZ ETRELT L& T8
GLThDH, J— = DBRAE N S=1ELRHAY U ZHEBRERIL, FONMABEICHRET S
LRI BRI IE D LB REMESC, MR R U NVBEEOEBIZ L 5 & FEEA~OIGH & W o T2 8LE
5, IMFEEHEZED WD, RIFEONGWE THD UTe, 1A ZHIBBIEAKOH IEMTH D
ESNTEY[], PR Y INVBREDOERNPHIFFIN TS, REBURL T n—7 ThHAEER
VB EE (Scanning Tunneling Microscopy : STM) (%, ¥ 3 77 uE— K72 ED bR U0 VB ER
A ORMREEZED 5 2 CHABRTFIETH D,

2018 FEDFBIREFE R [2]LAKE, STM % IV 72 UTe, DFE TR FIRFEDO R E N ANATON T & 1=, 5%
DR N—T1Z L %ﬁ%r(ﬁ(Charge Density Wave : CDW)D#LHINHE SN TH Y, ZosE L
DOBE D G S TS, BIREIREBIC I W TG 2 FUINT 5 &, B8 FEE Y Ho I 10 T)
T CDW 2MHELIZZ &00n, CDW DBERE LGRS BIE L TV D & W) FERD(FET H[3], T4
L, BEBIERE T UL E CRBEORE FHE 1T > 72548, CDW X HofiETHEDL L ODOIHK L
RN LD, CDW EBEIXERENICEE L2 2 & 2RI T 23S LIFET H[4], 20X,
W E DBMRIC OV T RN SN TN D, 7272 L 2D DSEFTHIFEIE, 2018 4EDOBRESE 7,24 1)l
ETELNTE T = 1.6 K 23R E 2 Wb O Th o7, D% 2022 FITITRYEOHERIZ LY
T.=21K ZRd@EFRENETINS], PIRECHEHIN Wy 7 U RBICERT 2MEED
I SO AR — (6] S e, FAFERANEIZR W TR B a8 R b ME S TR Y,
B R 2 W WFEIC & » T UTe, OAREW2MER A LS D Z EBRHIfF ST D

AL TIE UTe, DR M E FIREEZED Z k%a%&urEﬁﬁ@#m%%wtﬂMMm%ﬁoto
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T CDW iFfl &g, A7 —VU 7 LARWGEEIZIE COW I & s & PRI NS, 11T 1285
HEDHER, CDW B'— 7 58O "B &, m%ﬁﬂfﬁﬁéMthcmN&tm%&®%%
WHHNZ EDRRB I Tz, YLEX YD, STM TR ST 5 CDW IHERE &I XE R BfR T, (]
OOBEEFRF EAREA LTV D REEMENR B W E B LN~ T,
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Abstract We studied lyotropic liquid crystals mixture containing azo compounds. In this system,
excitation light irradiation drives a micelles shape change from rod-like to spherical, inducing N-I
transition. We quantitatively investigated this transformation using time-resolved DLS. We successfully
elucidated the phase transition using a novel isothermal and instantaneous light-induced quenching
method.
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[F] 7= MR EIEMERITH 5 SDS(Sodium Dodecyl Sulfate) & H F A L MR EIEMERITHh 5
DTAB (Dodecyltrimethylammonium Bromide) DA /KIERIL, IREBE TV A ey 7 x~vF v 7
(LLCN) ¥R THZ ENMBENTWA[L], ZORITETH-R~F v ZHOFMHIEBENEEIZ L - T
oD, SBELOBIRENEZLES 2KEBR L 2> TWD, ZDORIT trans—cis BT BT Vb %E
WIN4 5 2 & T, RS 2 7= Ak ie S 5 L U CROENREEZHIET 5 Z LN T&E 5 [2] , AT
ZETIET VA bEW & SDS/DTAB KR DIRA D% FFREBIZ W T, LT X 5%RA 7 = F
WZFED SEABRDOE A F I 7 A eMET 52 L2 AE L,

[FOBF - ElR] FLrmyE A (SDS+DTAB) DE &R ¢ & SDS/DTAB DE/VE o DFER DB, 7
JAbEY & LT Sunset Yellow 28RN L7z, £ ENOEHII T 2 2 5 FIRER T, B Y& [F Uik
FECHUR L, B BB EEOELE OLS) I TRIEZ 1T o 72, DLS I X » T A D T T 0 L IEB) OFEFIEE
MARE L, I BALORKIFEERERD D Z LN TE D, BRI X 5 2 L OifiEs 0
RIRFEAL A B 5 2 & T, RN ZO I B LVORREEBE LT,

(RS - B52] Fig. 1 137 7 v EBOFEFNRER ORFERTTIE & B e RS DR Fnis i ORI L T
Ho, FhEOBENC XLV, EE EF L RO OB SR S iz, SRR SR 2
BERABD L, BIBLOEINEL o TWE I ERbhoTz, E5IT, WA EENET D)6
B D o . afIFMEET T, Fig 2 IHSERHO o EMEZR LTS, T2 Tad/hs< 251
ONTSERMNEL 2o TnD Z ERHALNI R o7, alZIBAREOEMOMY ZEHR L TND
720, L BEAREOBEMEEN, REEKOY v o 71T 5 2B LOBIREL DR S IC K& B s
HzTWab EeEXOLND, DFEVD ., KBNS, FRO OB ENE 7 = FRAREE 72D | 2
TATGIREACRE T - 2~ F v VB O X A F 3 7 2 & ERANICERERIECTE 2 AfREME R &S N7,
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Fig.1. Temperature dependence of relaxation time (left) and change
during UV irradiation (right). The dotted line indicates the
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Fig.2. o dependence of UV response
time. The lines are guides to the eye.

relaxation time before starting UV irradiation. The relaxation time

1s decreasing due to temperature rise and UV irradiation.
(@:6=0.08, «=2.7/ @:$=0.08, «=2.6)
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Abstract We analyzed supercurrent-induced spin responses in noncentrosymmetric superconductors. We
showed that parity mixing of superconducting order parameters enables current-induced spin polarization
and spin currents even in the absence of spin-orbit coupling. Furthermore, we demonstrated the existence
of a previously overlooked phenomenon, namely supercurrent-driven spin polarization of Cooper pairs.
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KRER T E TlE, MEORZZ BHENFET 22 LT, EROWE CIEHEB LS Wi
RYBBE N RELT S, FOHP T, EHIKEERHRMES ISR TIE, Boka b WE{REE
MNP E A AT D2 LT, BFOE&RICE T 2 ERBRENLNE & Hel U CTREghRnZn
LD, ZOMBIGIO—DN, BILEERNS A ARG EFHL T 284, §72bHB{5E A £ Bdelstein
RN THD. 2O VX —HROLNAE A SEMEL, BREAY Y hr=s ZAOEBIZHIT -
FED—oL L TRERIEAZEDTE. EHIC, BIEE A L Edelstein 21113, FEHABIGER]IRHE
IRICHIGIE[3], AIRECEE)E D Cooper Xf[4]72 &, 22 BHRX PRI DML 72 AR BRI R DRE B G
CERBRIZBEBRLTEY, ZOROELE LML A BN 5 ECEBEREEIZHE S TN D.

P REMHEAEVISEOEIUIAE CHUEM B EADNRVESRE TENLETHDL LN DB
ANPERO A b=y RATBIT 5\ THDH. Lo LT, MW A Y LB BER 2 Ff-7evi
BIZBWTHERRAE AGMAAE TS Z LR LR DoH 5. ZOREHNZ, 220 S
P L BRI FREZ & IR T AW EEZ BN ERT LB A Y BNEBT 28R THS. ZDLH
WX T VT 4 LEBTACUNEET2HUIR CTX T U 7 ¢ ikt A 28R H| (Chirality-Induced Spin
Selectivity, CISS) &MEFILS. CISS RO 2 EFITEFRANICH LI SN TV RWnb Do,
BREICIEZ < OWEIZB W TH A 72 CISS ZIRDBBHI ST\ D. ZOHTYH, A UHLEFME/ERN
N2 A BB RIC BV T 72 CISS 2B SV TW D FE SN, 22 MRS Rt A3 i 72
RERIZBNT, TRV UEEHAER] RLFNCHNT 5 [Cooper xt D H.LESE) & & GO/ A 12
%0<%%@Mﬁﬁkiﬁfm TR DBWAHEAE INEOEFENGFIET 2 AREEZ /R LT,

Z ZCARRIZE T, ZE M REEX R M TR ERIC 3 1T 2 BIaA I A BV IGE D IERERA 2R
% PR ?%Lk.ﬁ%%& L, HEROHFER TIIA U —EHIEREAEE S TVl LT, 22
ﬁﬁ%ﬁﬁiﬁ@ﬂttﬁ%%f eI AEL S A — E%kxt/#E%®@ﬁ%&5ﬁﬁﬁﬁ

e~ LMt YRR L, BREEBRAFE T D A BB X OIERIE A B o6 2Bl L v gt L7-.
%ﬁﬁ%,Xt/%ﬁﬁE¢%®ﬁﬁ L6, XU T 4 BN DB(ERF AR O 12X - T,
AL EBRNAE AR E IR AE I EHRT 5 EE2n Lz, 612, RNU T ¢ RRICERT S
AV VAL, AV UCHUERAERICER TS A Y URE LI eI B D IREEREE A R T I L &
ST Lz, AT, #ekoIEim TITRE STV, EITIZ LY Cooper xt HARDMEART 5 BLR 237
T2 %R L, ZOEIEMN Cooper X OHNEEBE L AL OfEA | THDHZ EEMRIA L.

AR, BIRERFAEONEEBHED, SHIESENT-EICB T 2R ENEE IR LS 2 &
ERTHOTHY, MFMERIEN - BE RIS 28 - JREICET2FHOBRICHESTH. &5
2, HEEENAZ#E U T Cooper XD A Y HHEZREIICEIETX S LWV MR, #rEar
e =7 22z, BEEERIC X O2HRFHEGIEEZ SN T 28517 ho=7 Z0ERICHET 5.
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Abstract: To meet the growing demand for neutral atom quantum technologies, I focused on thulium
atoms, which are insensitive to the electric field due to the closed outer-shell electrons. This characteristic
is advantageous for integrating photonic technologies with atoms. In this study, I successfully laser-

cooled thulium atoms.
© 2026 Department of Physics, Kyoto University

A, ek FREF 2L, B3 B a— 2 RIFEOENNCF v =RV TY L B3 D

mE WAPTER A2 W2 & HAi A ez H O, DR

IIZEELEEICII R LTS, 20k o7

BN, BT ABVEA - TR ) BEEFEAWCRE S TE R, RIE, IERTHEF~D
TENK L CHRUR T A7 IiE, SEEMBIEENR R EO 7+ h=27 AFMT 3] % L 0 FEMIYIZEY At
LZEDMERARTHDL EERTZ, Ll BEEST 7 A e 8 ORI E O IR+ 4 i
SFHE, RPAEREMEERICED, aelL A2 RkoTLE D [4],

2 C, RAFFERmAAAAERICRS TR Y U 7 AR [5]
WCEH L, M1V U LARFOBFEEZ ST, Y TUA
JFf-1% 5sbpbs fLIEDATR CTH V| 4F FEIZ 1 DO XK (IEFL)
DD, ZORXRKEHY Y T LRAOT RV —ER ZRET
b, ZIT, B E 2o TV DHERN N ES 2 T D 72D
2, AP LEO EFLIXESR 2K U, bbb, YU v LR+
VLR S O F AR BRI THURRRF17 2 %2 5
b,

AWFZETIE, VU U AR OBEEEEZ -G L, BA
TIEFER DY VU LFAOL—F—mENZ RS LTz, T7b
B, 1000K & W) @IRICEFEEREZ T 24 —7 R0, @i
DJF A% W HHE ATRE 72 1R S & Tl S ¥ 5 B ——~ L iidids,
WEEDT- DD a A VIR EER% LTc, HRTIIND TOR
B THoTTm, =T KD T T b A~ORHILRL, 60cm
HOB—v Rl A Vg 8 L2 < OWERLRITERA D B o -
N, KR ICEZZ - af VERRTH LN TE R,

ZoEELE | BIRBEE LYY U ARFOBEIERE TH D
4f136s% °F, /o (F = 4) - 4f*?( *Hs)5d3,,6s*(J =9/ 2, F = 5)
(Z3E05 72 410, 7Tom O L—HF— 2 HW T, R HATY], AT
ABIH LR DYV U AFFOL—F—H{HNCKI LTz (K 2)
I TIEBR%E L2 Sl O 2 5 ) Tk B,
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Fig. 1. Electronic configuration of thulium atoms

Fig. 2. Laser cooled thulium atoms
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Abstract Bioconvection is a complex collective motion whose nonequilibrium dynamics remain poorly
understood. We focused on the translational motion of downward plumes and examined the convective response
in systems with controlled boundaries. Our results show that an imbalance in the cellular flux around the
downward plume would be the primary factor. © 2026 Department of Physics, Kyoto University

20 THACHIH X 0 VAR O REIE BCHEE A NR & < e S LT & 72, 4R T, H CBREiREE D

DR DEFMEENZ WD T 7T 47~ X —FFE TR L MRS AN TR 253 I i 1 7 ik O A
FENEAATOND L9 oTz, DL I RIEREERE 2, AW TR, MEDEMNA S OWE
VKIEBNC & > THEBHOWK 2B E AL, KBS ZERT 2 EDxi (111 L (Fig. 1) .
N E TOAEMFHRICBE T D28 Tk, BB EIERRITIC X 0 & RS ORI B oA~ e b4
BRI S, ERER L oEBEN TN TE - [2] . SHIGHETIHEBGAETT KRS
ErIalb—alitio T, ATV — 2 EEORIBENSHH I TS [3] . L,
BETEIFFE D% < 1. SHfAEE SRR & 5 FIH1E AR O R 2 AL 1 — /L6t it 00 22 8 JE I 2 e & 8 o Y
MEOBIRICERAEINTEY, FEELA T I 7 2, TRbLERERLLEMNL R EERTED
NASEERFERICONWTIL, BHPI I a2l —3a r THAICMBATETWS L IXE 22\, filx
X, RO ER TH D TR OERM - HIESCBE), FRIER LOAKRR EOERBRMEITH 50
[2,4] | AW =X L ZEimT D FERIOPIZECHERAESHAICIRERN £ § 25 b OIT 8N,

T EBE 2. ABE IR AR OE IR E RN
ICEAL S E B O, G E A 2 7 208 L& E
THZEEEMR LT, ERTIIT N7 v A ) (Tetrahymena
pyriformis) &\ D EUKBRAEY O &R R E IR &2 . KT
BT U CHEZIRIC & A7 D Hele-Shaw BURERIZ AL
T, S 2 2 BB Uiz, FesEmmic i3k om
HEZEAN L, TONMME - B - VA X&RBAITHIE LD
O, AT B & O LIS A & JE LTz,

ZORER, FRERA RIS O G HICEET 5 I00E
NESNDZ EEFERLE (Fig.2) . AMFETIZZ 08l
RO “EUED” LR, ZEOWHENE OREM &
DO EEFH Lz, KRS EHRSGE . FTREIZERHO e |
EAORES EER %IV EREORIE) 2V ARANs, ,
A (o ~%toy) TRy FoL—F—TFrFI Tk ey

Fig. 1. Bioconvection induced by
T. pyriformis.

T BN, D SN FREIZZOM bR LRI E & | ”
FU . ZOBEMEBIERRE (~1mm) O#FHZRLZ, B
2, IERBIZE DO AY 7T > 7 ADE RFNT 21T wan

o F R, PR O350 5 M A 35t Fig. 2. “Pinning” phenomenon.
PEE BB B D R STz, BIZ, BUEoie s The downward plume is pinned to the
DEEOFIU ML LY EERZ, I 21— 3L pillar in the biological convection of 7!
g Lo DK 5 2 & T, EMRIRET VOYLIE & %Y pyriformis within the Hele-Shaw cell.
PEDOWREEEAT > 72,
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Abstract We prove that the existence of a Quantum Computation with Classical Communication (QCCC)
coin flipping protocol secure against a bias of (\/f - 1) /2 implies the existence of one-way puzzles.
This extends the classical result of Haitner and Omri (2011) to the QCCC model by employing the
random continuation attack.

© 2026 Department of Physics, Kyoto University

BENT- TV EWVDICER L TR WFED, @EKEZE U TAEREEBEREZITY 2427V
v B 7 (Coin Flipping) | I%. 1981 FFIZ Blum[1IZ X » TREI NG SHGICRIT ARIETH 5,
HHEF S IZRBWT, Zelad 7 ) vy 77 ha)lvoFEEiE— R % (One-Way Function,
OWF) DIFELEMTH D Z ERFBITWD (2], LK B2 T OWF |3k & ZERER 70 51 S A9 (RE
ThHHEBEZLNTND—FHT, BETHEFIZBWTZONF BEELRWVERTH THLRER ST
T AT DEET A HREEDA R I N TV D, AIFFEIE, & FRHRITFRETH 2 B BEAFITHHE ¥
MZBE% QCCC (Quantum Computation with Classical Communication) ETFWICEBITAaAL 7 v
VT EHREENRE E OBRETT A LB ET D,

AIEDOFERFERE LT, AT AN (V2-1)/2 —0o(1) LT TH D447 QCCC a7 U v
7' f AP ET D72 BIE, —H WM N XL (One-Way Puzzle) MFAET 5 Z & ARE L7z, AU,
Haitner & Omri (2 & % dr 8l 5123 1F D5 H[3] 2 QCCC BT N~ LR L2 D TH 5,
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Abstract THz emission measurements on patterned Co/Pt magnetic metamaterials directly revealed
coherent ultrafast charge and spin currents driven by femtosecond pulses. Their polarization-angle
dependence qualitatively agrees with a magneto-photogalvanic effect model incorporating near-field
linear and induced circular components, indicating this effect governs current/spin-current generation and
guides polarization control.
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e W TE A B U PRAERIT, @SN X ZE R R FTR HIEA FTRE CTH D D, AV hua=2
AN CTEEREE 2 LRI N TS, 207, SEOREHBEZ AW TAE U FiOH
ERAEURBORKIEIL, 77 AE=w 7 AV VR E U], AR a A VERIR2], hARe Yk
MR A 2 ~T VT N[BT 7 T T — /L A TOFRIE T VS ) h R [4]72 £ S 6k72 R TR
ST D, AP TIE, RS R T 2 22 M R O & BALISE K3 2 R SR 5 FR
PO AR S DREA X ~T ) TIOVIZEH L[S]. RRE CHE S ae—L v FaERB IO
A ROESIEEZH ST D22 BE LT, T I~/ (THz) HS o R fERH & 21T -
7o WUV A CHRE) S LD BB - A B UtE~ 7 A7 o VFRRRICHE THz B & L CThkgt &
DT, G A RHITER CHIET 5 2 & T, EapAr—oak — L NEEZ I Tl
T& 5, (EkOEMGAH L TRE LEAIBERDOBENALY Y 7F =y MIRESCAE U EBE—Xy 7%
EDI L — L MEEEZIZ[6]. JEMEEZOBIRAEROFREEFRDL L NAETHD,

AEHZ, mER b Z T Co/Pt ZREMEIC [ DF] BRIRDANZ — I LA Lo A 2 ~7 U 7 v
ZHAV, HLEER 800 nm DV AFE KV B Uiz, fRIEDT I & R oo SR & oo AH 6 £ A 28l &
725 THz JIE 2 8L U 7= fE 3. THz B8 MR A 1Tk L T8 b L, & BICRABSRIC L 0
FEORFSRRERT 5 Z Enbhrolz, Zhvbid, MEmIEFE (RESFREDOIN) &b TITIZ
9 D HERE DO ER « AN ER L TWDZ EERLTWD, BEA Z~T U 7 ABNED 4T
BN, =y VEFEO KON E RIS 2 D RFTER E TN D 2o, R E A R
(FDTD) Ik 2EM v I ab—a v &iTolc, AFABESRENL TH-TH, #HELeEO RTE
BAITA RN R IR D SFR SN D Z & &2 B2 Lz, FDTD TE-ITHEE (B - FRCKSY) %
EBEL, =y VIBHRICBITDE ORI NN | BRI NN )R OET VEHFEEZITV, ERE X
OHAE RORIEAREIEZTAL L7, £ ORER. BT S V7@ A A TE & ErEric—8cd
L ENbrote, TOORRIE, RS FREDORBALIZI X, fiEx » DFHEO R mEIC L -T2
M AR AR AR AL 7= FE RISkt L, 3B OB YR 5 & PR BRI NS 7 3 R % 5|
TR, MHEAZ~T VT MBI A HAE AR E L TND Z EZ2R LTINS,
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